Vol. 35 No. 1 (2022): Revista ION
Articles

Optimization of the fibroin extraction process from the Bombyx Mori silkworm cocoon

Carlos Augusto Murillo Usuga
Universidad de Antioquia
Diana Marcela Escobar Sierra
Universidad de Antioquia

Published 2022-06-03

Keywords

  • Fibroin,
  • degumming,
  • optimization

How to Cite

Murillo Usuga, C. A., & Escobar Sierra, D. M. (2022). Optimization of the fibroin extraction process from the Bombyx Mori silkworm cocoon. Revista ION, 35(1), 33–42. https://doi.org/10.18273/revion.v35n1-2022003

Abstract

In the present work, a statistical study was carried out to optimize the performance of the fibroin extraction process from the cocoon of the silkworm Bombyx Mori, also known as degumming, in which fibroin and sericin, components that make up the cocoon structure, are separated using aqueous solutions of sodium carbonate (Na2CO3); the study was done through an experimental design 23 with two central points. For this purpose, the selected parameters were temperature, the Na2CO3/Cocoons ratio andextraction time. The statistical significance of these factors was studied by analysis of variance (ANOVA). According to the results, the extraction process depends mainly on the extraction time (p = 0.009) and the working temperature (p = 0.0112), obtaining an average of 74.76% fibroin from the cocoon under optimal extraction conditions. Finally, the sample obtained under the best conditions was characterized by Fourier Transform Infrared Spectroscopy (FTIR) and by Thermo Gravimetric Analysis (TGA) in order to have the basis of the material obtained for possible biomedical applications.

Downloads

Download data is not yet available.

References

  1. Khan MMR, Tsukada M. Electrospun silk sericin nanofibers for biomedical applications. Silk biomaterials for tissue engineering and regenerative medicine. Woodhead Publishing. 2014; 125-156. doi: 10.1533/9780857097064.1.125.
  2. Dumitriu S. Polymers as Biomaterials 1. 2002. doi:10.15713/ins.mmj.3.
  3. Enis IY, Sezgin H, Sadikoglu TG. Full factorial experimental design for mechanical properties of electrospun vascular grafts. Journal of Industrial Textiles. 2018;47(6):1378-1391. doi:10.1177/1528083717690614.
  4. Koh LD, Cheng Y, Teng CP, Khin YW, Loh XJ, Tee SY, Han MY (2015). Structures, mechanical properties and applications of silk fibroin materials. Progress in Polymer Science. 2015;46: 86-110.
  5. Zhang J, Huang H, Ju R, Chen K, Li S, Wang W, Yan Y. In vivo biocompatibility and hemocompatibility of a polytetrafluoroethylene small diameter vascular graft modified with sulfonated silk fibroin. The American Journal of Surgery. 2017;213(1): 87-93.
  6. Wang D, Liu H, Fan Y. Silk fibroin for vascular regeneration. Microsc. Res. Tech. 2017;80(3):280–290.
  7. Wang Q, Tu F, Liu Y, Zhang Y, Li H, Kang Z, et al. The effect of hirudin modification of silk fibroin on cell growth and antithrombogenicity. Mater Sci Eng C. 2017;75:237–46.
  8. Sagnella A, Pistone A, Bonetti S, Donnadio A, Saracino E, Nocchetti M, et al. Effect of different fabrication methods on the chemophysical properties of silk fibroin films and on their interaction with neural cells. RSC Adv. 2016;6(11):9304-14.
  9. Du X, Wang Y, Yuan L, Weng Y, Chen G, Hu Z. Guiding the behaviors of human umbilical vein endothelial cells with patterned silk fibroin films. Colloids Surf B Biointerfaces. 2014;122:79-84.
  10. Du J, Zhu T, Yu H, Zhu J, Sun C, Wang J, et al. Potential applications of three-dimensional structure of silk fibroin/poly(ester-urethane) urea nanofibrous scaffold in heart valve tissue engineering. Appl Surf Sci. 2018;447:269-78.
  11. Li Z-H, Ji S-C, Wang Y-Z, Shen X-C, Liang H. Silk fibroin-based scaffolds for tissue engineering. Front Mater Sci. 2013;7(3):237- 47.
  12. Seib FP, Herklotz M, Burke KA, Maitz MF, Werner C, Kaplan DL. Multifunctional silk e heparin biomaterials for vascular tissue engineering applications. Biomaterials. 2014;35:83-91.
  13. Sun N, Lei R, Xu J, Kundu SC, Cai Y, Yao J, et al. Fabricated porous silk fibroin particles for pH-responsive drug delivery and targeting of tumor cells. J Mater Sci. 2019;54(4):3319-30.
  14. Chen J, Venkatesan H, Hu J. Chemically modified silk proteins. Adv Eng Mater. 2018;20(7):1700961. 42 rev. ion. 2022;35(1):33-42. Bucaramanga (Colombia).
  15. Adalı T, Uncu M. Silk fibroin as a nonthrombogenic biomaterial. Int J Biol Macromol. 2016;90:11-9.
  16. Mi H-Y, Jiang Y, Jing X, Enriquez E, Li H, Li Q, et al. Fabrication of triple-layered vascular grafts composed of silk fibers, polyacrylamide hydrogel, and polyurethane nanofibers with biomimetic mechanical properties. Mater Sci Eng C. 2019;98:241-9.
  17. Zhou J, Zhang B, Shi L, Zhong J, Zhu J, Yan J, et al. Regenerated silk fibroin films with controllable nanostructure size and secondary structure for drug delivery. ACS Appl Mater Interfaces. 2014;6(24):21813–21.
  18. Lu Q, Hu X, Wang X, Kluge JA, Lu S, Cebe P, et al. Water-insoluble silk films with silk I structure. Acta Biomater. 2010;6(4):1380–7.
  19. Kamalha E, Zheng Y, Zeng Y. Analysis of the secondary crystalline structure of regenerated Bombyx mori fibroin. Res Rev Biosci. 2013;7:76–83.
  20. Nakazawa Y, Sato M, Takahashi R, Aytemiz D, Takabayashi C, Tamura T, et al. Development of small-diameter vascular grafts based on silk fibroin fibers from Bombyx mori for vascular regeneration. J Biomater Sci Polym Ed. 2011;22(1–3):195–206.
  21. DeBari MK, Abbott RD. Microscopic considerations for optimizing silk biomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11(2):e1534.
  22. Sah MK, Kumar A, K P. The extraction of fibroin protein from Bombyx Mori silk cocoon: Optimization of process parameters. Int j bioinform res. 2010;2(2):33–41.
  23. Yun H, Oh H, Kim MK, Kwak HW, Lee JY, Um IC, et al. Extraction conditions of Antheraea mylitta sericin with high yields and minimum molecular weight degradation. Int J Biol Macromol. 2013;52:59–65.
  24. Allardyce BJ, Rajkhowa R, Dilley RJ, Redmond SL, Marcus D. Atlas, Wang X. Glycerolplasticised silk membranes made using formic acid are ductile, transparent and degradationresistant. Mater Sci Eng C. 2017;80:165–73.
  25. Song JE, Sim BR, Jeon YS, Kim HS, Shin EY, Carlomagno C, et al. Characterization of surface modified glycerol/silk fibroin film for application to corneal endothelial cell regeneration. J Biomater Sci Polym Ed. 2019;30(4):263–75.
  26. Subia B, Chandra S, Talukdar S, Kundu SC. Folate conjugated silk fibroin nanocarriers for targeted drug delivery. Integr Biol (Camb). 2014;6(2):203–14.
  27. Zhao Z, Li Y, Xie M-B. Silk fibroin-based nanoparticles for drug delivery. Int J Mol Sci. 2015;16(3):4880–903.
  28. Seib FP, Herklotz M, Burke KA, Maitz MF, Werner C, Kaplan DL. Multifunctional silkheparin biomaterials for vascular tissue engineering applications. Biomaterials. 2014;35(1):83–91.
  29. Kara F, Aksoy EA, Calamak S, Hasirci N, Aksoy S. Immobilization of heparin on chitosangrafted polyurethane films to enhance antiadhesive and antibacterial properties. J Bioact Compat Polym. 2016;31(1):72–90.
  30. Kuehl R. Diseño de experimentos. Principios estadísticos de diseño y análisis de investigación. 2 ed. Thomson Learning; 2000.
  31. Leivisk K. Introduction to Experiment Design. University of Oulu; 2013.
  32. Takasu Y, Yamada H. Tsubouchi K. Isolation of Three Main Sericin Components from the Cocoon of the Silkworm, Bombyx mori. Biosci Biotechnol Biochem. 2002;66(12):2715–18.
  33. Murphy A, Kaplan D. Biomedical applications of chemically-modified silk fibroin. J. Mater Chem. 2009;19(36):6443–50.
  34. Yeo I-S, Oh J-E, Jeong L, Lee TS, Lee SJ, Park WH, et al. Collagen-based biomimetic nanofibrous scaffolds: preparation and characterization of collagen/silk fibroin bicomponent nanofibrous structures. Biomacromolecules. 2008;9(4):1106–16.
  35. Jin H-J, Kaplan DL. Mechanism of silk processing in insects and spiders. Nature. 2003;424(6952):1057–61.
  36. Bandekar J, Krimm S. Vibrational analysis of peptides, polypeptides, and proteins: Characteristic amide bands of beta-turns. Proc Natl Acad Sci U S A. 1979;76(2):774–7.
  37. Boulet-Audet M, Vollrath F, Holland C. Identification and classification of silks using infrared spectroscopy. J Exp Biol. 2015;218(Pt 19):3138–49.
  38. Kweon HY, Um IC, Park YH. Thermal behavior of regenerated Antheraea pernyi silk fibroin film treated with aqueous methanol. Polymer (Guildf). 2000;41(20):7361–67.
  39. Antonella M, Luca F, Claudio M. Regenerated silk fibroin films: Thermal and dynamic mechanical analysis. Macromol Chem Phys. 2002;203(10-11):1658–1665.