Vol. 35 Núm. 1 (2022): Revista ION
Artículos

Cinética de adsorción de diésel por bioadsorbentes de fibra in natura de coco (cocus nucifera)

Lailson de Sousa
Universidade Federal do Maranhão, Departamento de Engenharia Química
Harvey Alexander Villa-Vélez
Universidade Federal do Maranhão, Departamento de Engenharia Química
Paulo Henrique Coelho Leite
Universidade Federal do Maranhão

Publicado 2022-11-01

Palabras clave

  • Adsorción,
  • Bioadsorbente,
  • Cinética,
  • Diésel,
  • Fibra de coco

Cómo citar

de Sousa, L., Alexander Villa-Vélez, H., & Coelho Leite, P. H. (2022). Cinética de adsorción de diésel por bioadsorbentes de fibra in natura de coco (cocus nucifera). Revista ION, 35(1), 117–131. https://doi.org/10.18273/revion.v35n1-2022008

Resumen

Los bioadsorbentes lignocelulósicos son comúnmente utilizados en los procesos de adsorción debido a sus características de no deteriorar el medio ambiente y ser económicamente rentables. En este trabajo, fue utlizado un diseño experimental 23 con un punto central para evaluar la eficiencia de las fibras del mesocarpio de coco (Cocus nucifera L.), como bioadsorbente para el diésel. El objetivo fue determinar la concentración de fibras, la granulometría del adsorbente y el tiempo de contacto que proporcionaran una mayor sorción.  Los resultados de los ensayos cinéticos se ajustaron a través de los modelos de pseudo primera orden, pseudo segunda orden, difusión interpartícula y Elovich. Se observó una mayor sorción para la granulometría de 125-250 µm, 45 min y 200 mg de fibras, alcanzando la sorción de 0,67 g de diésel por gramo de fibra. Con esta eficacia, para niveles medios de contaminación, se puede utilizar 1 kg de fibras para tratar hasta 10 m3 de efluente. Además, el modelo de pseudo segunda orden presentó los mejores ajustes a los datos experimentales. La energía de activación fue de 210,13 J/mol con una constante de Arrhenius equivalente a 60,47, mostrando que la adsorción se produjo por fisisorción, a través de la difusión superficial del adsorbato en el adsorbente.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Karimi S, Yaraki MT, Karri RR. A comprehensive review of the adsorption mechanisms and factors influencing the adsorption process from the perspective of bioethanol dehydration. Renew. Sust. Energ. Rev. 2019;107:535–553. doi.org/10.1016/j.rser.2019.03.025
  2. Carmody O, Frost R, Xi Y, Kokot S. Adsorption of hydrocarbons on organoclays implications for oil spill remediation. J. Colloid Interface Sci. 2007;305(1):17–24. doi.org/10.1016/j.jcis.2006.09.032
  3. Li B, Liu X, Zhang X, Zou J, Chai W, Lou Y. Rapid adsorption for oil using superhydrophobic and superoleophilic polyurethane sponge. J. Chem. Technol. Biotechnol. 2015;90(11):1-14. doi.org/10.1002/jctb.4646
  4. Fabre E, Lopes CB, Vale C, Pereira E, Silva CM. Valuation of banana peels as an effective biosorbent for Mercury removal under low environmental concentrations. Sci. Total Environ. 2020;709(135883):1-34. doi.org/10.1016/j.scitotenv.2019.135883
  5. Castro RSD, Caetano L, Ferreira G, Padilha M, Saeki MJ, Zara LF, et al. Banana Peel Applied to the Solid Phase Extraction of Copper and Lead from River Water: Preconcentration of Metal Ions with a Fruit Waste. Ind. Eng. Chem. Res. 2011;50:3446-3451. dx.doi.org/10.1021/ie101499e
  6. Reddy S, Osborne WJ. Heavy metal determination and aquatic toxicity evaluation of textile dyes and effluents using Artemia salina. Biocatal. Agric. Biotechnol. 2020;25(101574):1-8. doi.org/10.1016/j.bcab.2020.101574
  7. Araújo DA, Curbelo FDS, Braga RM, Garnica AIC. Remoção do óleo da água produzida utilizando o carvão ativado comercial. Holos. 2017;8:12-31. doi.org/10.15628/holos.2017.5891
  8. Hayawin NZ, Ibrahim ME, Faizah JN, Ropandia M, Astimar AA, et al. Palm oil mill final discharge treatment by a continuous adsorption system using oil palm kernel shell activated carbon produced from two in-one carbonization activation reactor system. J. Water Process. Eng. 2020;36(101262):1-6. doi.org/10.1016/j.jwpe.2020.101262
  9. Golub A, Piekutin J. Use of porous materials to remove oil contaminants from water. Sci. Total Environ. 2018;627:723–732. doi.org/10.1016/j.scitotenv.2018.01.238
  10. Perini BLB, Drews JL, Cunha SKK, Krohl DR, Sellin N. Adsorção de corantes de efluente têxtil por resíduos da Bananicultura. III Congresso Brasileiro De Gestão Ambiental; 19 – 22 de novembro de 2012; Goiânia, Brasil. Goiânia: Instituto Brasileiro de Estudos Ambientais; 2012. p. 1 – 6.
  11. Almagro AS, Rocha SMS. Aplicação de bioadsorvente de casca de coco verde para o tratamento de efluentes oleosos. Anais XI Congresso Brasileiro De Engenharia Química Em Iniciação Científica; 19 – 22 de julho de 2015; Campinas, Brasil. São Paulo; Blucher Chemical Engineering Proceedings; 2007. 1(3). p. 1 - 6.
  12. Oliveira AF, Leão AL, Caraschi JC, Oliveira LC, Gonçalves JE. Características físicoquímicas, energética e desempenho da fibra de coco na sorção de óleos diesel e biodiesel. Botucatu. 2011;26(3):1-13. dx.doi.org/10.17224/EnergAgric.2011v26n3p01-13
  13. Brainer MSCP. Produção de coco: o Nordeste é destaque nacional. Caderno setorial ETENE. 2018;3(61):1-25.
  14. Vieira PA, Vieira RB, França FP, Cardoso VL. Biodegradation of effluent contaminated with diesel fuel and gasoline. J. Hazard. Mater. 2007;140:52-59. doi.org/10.1016/j.jhazmat.2006.06.048
  15. Imron MF, Kurniawan SB, Ismail NI, Abdullah SRS. Future challenges in diesel biodegradation by bacteria isolates: A review. J. Clean. Prod. 2020;251(119716):1-18. doi.org/10.1016/j.jclepro.2019.119716
  16. Thilagavathi G, Karan CP, Das D. Oil sorption and retention capacities of thermally-bonded hybrid nonwovens prepared from cotton, kapok, milkweed and polypropylene fibers. J. Environ. Manage. 2018;219:340-349. doi.org/10.1016/j.jenvman.2018.04.107
  17. Oliveira LMTM, Oliveira LFAM, Sonsin AF, Duarte JLS, Soletti JI, Fonseca EJS, et al. Ultrafast diesel oil spill removal by fibers from silk-cotton tree: Characterization and sorption potential evaluation. J. Clean. Prod. 2020;263(121448):1-13. doi.org/10.1016/j.jclepro.2020.121448
  18. Martins LS, Monticelli FM, Mulinari DR. Influence of the granulometry and fiber content of palm residues on the diesel S-10 oil sorption in polyurethane/palm fiber biocomposites. Results in Materials. 2020;8(100143):1-10. doi.org/10.1016/j.rinma.2020.100143
  19. Saeed M, Riaz A, Intisar A, Zafar MI, Fatima H, Howari H, Alhodaib A, Waseem A. Síntese, caracterização e aplicação de argilas organofílicas para dessulfuração adsortiva de óleo combustível. Sci Rep. 2022;12(7362):1–12. doi.org/10.34115/basrv5n2-042
  20. Sadare OO, Ayeni AO, Daramola MO. Evaluation of adsorption and kinetics of neem leaf powder (Azadirachta indica) as a biosorbent for desulfurization of dibenzothiophene (DBT) from synthetic diesel. J. Saudi Chem. Soc. 2022;26(101433):1–13. doi.org/10.1016/j.jscs.2022.101433
  21. Saxena M, Sharma N, Saxena R. Highly efficient and rapid removal of a toxic dye: Adsorption kinetics, isotherm, and mechanism studies on functionalized multiwalled carbon nanotubes. Surf. Interfaces. 2020;21(100639):1-10. doi.org/10.1016/j.surfin.2020.100639
  22. Nascimento RF, Lima ACA, Vidal CB, Melo DQ, Raulino GSC. Adsorção: aspectos teóricos e aplicações ambientais. Brasil: Imprensa universitária da Universidade Federal do Ceará; 2014.
  23. Fang D, Zhuang X, Huang L, Zhang Q, Shen Q, Jiang L, et al. Developing the new kinetics model based on the adsorption process: From fitting to comparison and prediction. Sci. Total Environ. 2020;725(138490):1-11. doi.org/10.1016/j.scitotenv.2020.138490
  24. Selen V, Guler O, Ozer D, Evin E. Synthesized multi-walled carbon nanotubes as a potential adsorbent for the removal of methylene blue dye: kinetics, isotherms, and thermodynamics. Desalination Water Treat. 2016;57:8826-8838. doi.org/10.1080/19443994.2015.1025851
  25. FISPQ - Ficha de Informações de Segurança de Produto Químico. SHELL EVOLUX DIESEL B S10. Petrofacil Combustíveis Ltda. Disponível em: https://www.petroffacil.com.br/admin/arq/produto/4/FISPQ%20Shell%20Evolux%20Diesesl%20B10%20S10%20vers%C3%A3o6%20Fev2018.pdf. Modificado em 15/02/2018. Acessado em 20 de abril de 2021.
  26. Coutinho IB, Santana IA, Iguti AM. Efeito da granulometria da fibra de coco verde na adsorção de compostos provenientes do petróleo. Em: As engenharias e seu papel no desenvolvimento autossustentado. Holzamann H, Dallamuta J, Mazur V. Brasil: Atena, 2020.
  27. Abdelwahab O, Nasr SM, Thabet WM. Palm fibers and modified palm fibers adsorbents for different oils. Alex. Eng. J. 2017;56(4):749-755. doi.org/10.1016/j.aej.2016.11.020
  28. Shahawy AE, Heikal G. Organic pollutants removal from oily wastewater using clean technology economically, friendly biosorbent (Phragmites australis). Ecol. Eng. 2018;122:207–218. doi.org/10.1016/j.ecoleng.2018.08.004
  29. Oliveira LH. Tratamento de água produzida contaminada com óleo diesel utilizando adsorventes funcionalizados (Tese Doutorado em Engenharia Química e Alimentos). Florianopólis, Brasil: Universidade Federal de Santa Catarina; 2015.
  30. Silva AT, Felix T, Debacher NA. Efeito da temperatura na adsorção de azul de metileno em serragem. Em: Bolzani, VS, editores. 25ª Reunião anual da Sociedade Brasileira de Química; 2006 maio 19-22; Águas de Lindóia, Brasil. Anais da 25ª Reunião anual da Sociedade Brasileira de Química, 2006.
  31. Froder J. Gerenciamento dos efluentes oriundos das etapas de lavagem de uma oficina mecânica de motocicletas (Relatório de Estágio Técnico em química). Lajeado, Brasil: Universidade do Vale do Taquari; 2017.
  32. Renita AA, Sathish S, Kumar JA, Nagarajan L, Kumaran SJS, Sangeeth S. Surface treated Phoenix sylvestris for bioadsorption of oil from aqueous solution: Isotherms and kinetic studies. Environmental Research. 2022;209(112836):1–11. doi.org/10.1016/j.envres.2022.112836
  33. Cardoso CKM, Mattedi S, Lobato AK, Moreira IT. Remediation of petroleum contaminated saline water using value-added adsorbents derived from waste coconut fibres. Chemosphere. 2021;279(130562):1–11. doi.org/10.1016/j.chemosphere.2021.130562
  34. Aquino Oliveira SF. Avaliação energética da biomassa do bagaço de cana de açúcar em diferentes indústrias sucro energéticas (Dissertação de Mestrado). São José dos Campos, Brasil: Instituto Tecnológico de Aeronáutica; 2014.
  35. Araujo Puglia de Carvalho PC. Tratamento Combinado da água produzida de petróleo: Filtração, Adsorção e foto – fenton (Tese de Doutorado em Engenharia Química). Natal, Brasil: Universidade Federal do Rio Grande do Norte; 2016.
  36. Wang J, Guo X. Adsorption kinetic models: Physical meanings, applications, and solving methods. J. Hazard. Mater. 2020;390(122156):1-18. doi.org/10.1016/j.jhazmat.2020.122156
  37. Roumie JPR, Dantas G, Coelho PHSL, Villa-Velez, HA. Estudo de um sistema de adsorção de metais pesados por filtros de fibra de coco. In: XXXIX Congresso Brasileiro de Sistemas Particulados (ENEMP), Belém, 2019;2(1):116607.
  38. Corradini E, Rosa MF, Macedo BP, Paladin PD, Mattoso LHC. Composição química, propriedades mecânicas e térmicas da fibra de frutos de cultivares de coco verde. Rev. Bras. Frutic. 2009;31(3):837-846. doi.org/10.1590/S0100-29452009000300030
  39. Ruthven DM. Principles of Adsorption and Adsorption Process. United States of America: John Wiley & Sons; 1984.
  40. Tan IAW, Hameed BH, Ahmad AL. Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbono. Chem. Eng. J. 2007;127:111–119. doi.org/10.1016/j.cej.2006.09.010
  41. Fontana KB, Chaves ES, Sanchez JDS, Watanabe ERLR, Pietrobelli JMTA, Lenzi GG. Biossorção de Pb(II) por casca de urucum (Bixa orellana) em soluções aquosas: estudo cinético, equilíbrio e termodinâmico. Quim nova. 2016;39(5):1078-1084. doi.org/10.5935/0100-4042.20160113