Vol. 37 Núm. 3 (2024): Revista ION
Artículos

Diseño y puesta en marcha de un sistema de pirólisis catalítica de poliestireno expandido

Julieth García Sánchez
Centro de Investigaciones en Catálisis (CICAT) y Laboratorio de Ciencia de Superficies (SurfLab)
Lizeth Alejandra Arenas Aguilar
Centro de Investigaciones en Catálisis (CICAT)
Lizeth Dayana Cendales Sánchez
Centro de Investigaciones en Catálisis (CICAT)
Víctor Gabriel Baldovino Medrano
Centro de Investigaciones en Catálisis (CICAT) y Laboratorio de Ciencia de Superficies (SurfLab)
Resumen gráfico

Publicado 2024-12-09

Palabras clave

  • Poliestireno expandido,
  • Pirólisis catalítica,
  • Estireno,
  • Catalizador de FCC

Cómo citar

García Sánchez, J., Arenas Aguilar, L. A., Cendales Sánchez, L. D. ., & Baldovino Medrano, V. G. . (2024). Diseño y puesta en marcha de un sistema de pirólisis catalítica de poliestireno expandido. Revista ION, 37(3), 57–71. https://doi.org/10.18273/revion.v37n3-2024005

Resumen

Esta investigación tuvo como objetivo diseñar y poner a punto un reactor semi-continuo de acero inoxidable 316 para el aprovechamiento de poliestireno expandido en la obtención de estireno mediante pirólisis catalítica. Se construyó un reactor de 1335 cm3 compuesto de un recipiente tubular con salida de vapores lateral, un horno de calentamiento, un condensador tipo serpentín y un rotámetro para el alimento de un gas de arrastre (N2). Para el proceso, se usó un catalizador industrial de craqueo catalítico fluidizado. Dentro de la metodología desarrollada para realizar las pruebas catalíticas se destaca que: (i) el catalizador fue mezclado con el poliestireno mediante molienda mecánica. (ii) Se determinaron los perfiles de temperatura del reactor y se comparó el comportamiento del catalizador con el observado en su ausencia. La eficiencia del proceso se evalúo en términos del rendimiento hacia estireno y la pureza del producto líquido. Finalmente, se determinaron las mejores condiciones de operación mediante un diseño factorial 32 usando como variables de entrada la temperatura (360 °C, 430 °C y 500 °C) y la altura del lecho (4, 6 y 8 cm). Se determinó que las variables afectan de forma similar a la pureza del líquido y el rendimiento hacia estireno, pero que el efecto generado depende de la interacción entre las dos variables estudiadas. Las mejores condiciones de operación del reactor obtenidas del diseño experimental fueron 430 °C y 4 cm de lecho obteniendo un rendimiento de 0,74 g de estireno/g poliestireno expandido y 89 % de pureza.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Herberz T, Barlow CY, Finkbeiner M. Sustainability Assessment of a Single-Use Plastics Ban. Sustainability. 2020;12(9):3746. https://doi.org/10.3390/su12093746
  2. Dey A, Dhumal CV, Sengupta P, Kumar A, Pramanik NK, Alam T. Challenges and possible solutions to mitigate the problems of single-use plastics used for packaging food items: a review. J Food Sci Technol. 2021;58:3251–3269. https://doi.org/10.1007/s13197-020-04885-6
  3. Laville S, Taylor M. El mundo compra un millón de botellas de plástico por minuto que acaban en vertederos o en el mar. elDiario.es. https://www.eldiario.es/internacional/theguardian/compra-botellas-plastico-mayoria-vertederos_1_3309129.html (June 2017).
  4. Greenpeace. Situación actual de los plásticos en Colombia y su impacto en el medio ambiente. http://greenpeace.co/pdf/2019/gp_informe_plasticos_colombia_02.pdf (November 2019).
  5. Rodríguez DK. Colombia produce 1,4 millones de toneladas de plástico al año. Portafolio 2 June 2022. https://www.portafolio.co/economia/colombia-produce-1-4-millones-de-toneladas-de-plastico-al-ano-566367 (2 June 2022).
  6. Ministerio de Ambiente y Desarrollo Sostenible. Plan Nacional para la Gestión Sostenible de los plásticos de un solo uso. Bogotá, https://www.minambiente.gov.co/wp-content/uploads/2022/02/plan-nacional-para-la-gestion-sostenible-de-plasticos-un-solo-uso-minambiente.pdf (June 2021)
  7. Rodríguez H, Montilla T. Icopor, asesino silencioso de la vida humana (Tesis de Pregrado). Santiago de Cali, Colombia: Universidad Libre, Seccional Cali; 2021.
  8. García N. Evaluación del impacto ambiental de la aplicación de un plan de gestión posconsumo de poliestireno expandido (EPS) utilizado en el envase de alimentos en Colombia (Tesis de Maestría). Bogotá, Colombia: Universidad EAN; 2019.
  9. Barrera Castro GP. Caracterización de las propiedades mecánicas y térmicas de muestras de EPS pos consumo, utilizadas en la industria de alimentos y sometidas a un proceso de recuperación (Tesis de Maestría). Bogotá, Colombia: Universidad Nacional de Colombia; 2016.
  10. Chen W, Hao H, Hughes D, Shi Y, Cui J, Li ZX. Static and dynamic mechanical properties of expanded polystyrene. Materials & Design. 2015;69:170–180. https://doi.org/10.1016/j.matdes.2014.12.024
  11. Arthuz L, Pérez W. Alternativas De Bajo Impacto Ambiental Para El Reciclaje Del Poliestireno Expandido a Nivel Mundial. Informador Técnico. 2019;83(2):209–219. https://doi.org/10.23850/22565035.1638
  12. Arandes J, Bilbao J, López-Valerio D. Reciclado de residuos plásticos. Revista Iberoamericana de Polímeros. 2004;5:28–45.
  13. Contreras F. Estudio de la pirólisis catalítica de polietileno en un reactor semi-Batch (Tesis de Maestría). Santiago de Chile, Chile: Universidad de Chile; 2014.
  14. Mo Y, Zhao L, Chen C-L, Tan GYA, Wang J-Y. Comparative pyrolysis upcycling of polystyrene waste: thermodynamics, kinetics, and product evolution profile. J Therm Anal Calorim. 2013;111:781–788. https://doi.org/10.1007/s10973-012-2464-6
  15. Jaime Sepúlveda RM. Síntesis de resinas catalíticas para la transformación del glicerol en fase acuosa (Tesis de Pregrado). Bucaramanga, Colombia: Universidad Industrial de Santander; 2020.
  16. Zambrano A. Reciclaje químico de plástico mediante pirólisis catalítica usando un catalizador regenerado (Tesis de Pregrado). Riobamba, Ecuador: Escuela superior politécnica de Chimborazo; 2022.
  17. Miller RR, Newhook R, Poole A. Styrene production, use, and human exposure. Crit Rev Toxicol. 1994;24:S1–S10. https://doi.org/10.3109/10408449409020137
  18. Çelikgöğüs Ç, Karaduman A. Thermal-catalytic Pyrolysis of Polystyrene Waste Foams in a Semi-batch Reactor. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2015;37:2507–2513. https://doi.org/10.1080/15567036.2011.626492
  19. Williams PT, Bagri R. Hydrocarbon gases and oils from the recycling of polystyrene waste by catalytic pyrolysis. Int J Energy Res. 2004;28:31–44. https://doi.org/10.1002/er.949
  20. Fuentes C, Colman Lerner J, Vázquez P, Sambeth J. Analysis of the emission of PAH in the thermal and catalytic pyrolysis of polystyrene. Catalysis Today. 2021;372:175–182. https://doi.org/10.1016/j.cattod.2020.11.030
  21. Dong D, Tasaka S, Inagaki N. Thermal degradation of monodisperse polystyrene in bean oil. Polymer Degradation and Stability. 2001;72:345–351. https://doi.org/10.1016/S0141-3910(01)00031-3
  22. Inayat A, Fasolini A, Basile F, Fridrichova D, Lestinsky P. Chemical recycling of waste polystyrene by thermo-catalytic pyrolysis: A description for different feedstocks, catalysts and operation modes. Polymer Degradation and Stability. 2022;201:109981.
  23. Rawlence DJ, Gosling K. FCC catalyst performance evaluation. Applied Catalysis. 1988;43(2):213–237. https://doi.org/10.1016/S0166-9834(00)82729-3
  24. Palos R, Rodríguez E, Gutiérrez A, Bilbao J, Arandes JM. Cracking of plastic pyrolysis oil over FCC equilibrium catalysts to produce fuels: Kinetic modeling. Fuel. 2022;316:123341. https://doi.org/10.1016/j.fuel.2022.123341
  25. Lee C-G, Cho Y-J, Song P-S, Kang Y, Kim J-S, Choi M-J. Effects of temperature distribution on the catalytic pyrolysis of polystyrene waste in a swirling fluidized-bed reactor. Catalysis Today. 2003;79–80:453–464. https://doi.org/10.1016/S0920-5861(03)00060-9
  26. Wang J, Ma Y, Li S, Yue C. Catalytic pyrolysis of polystyrene in different reactors: Effects of operating conditions on distribution and composition of products. JAAP. 2024;177:106366. https://doi.org/10.1016/j.jaap.2024.106366
  27. Imani Moqadam S, Mirdrikvand M, Kharaghani A, Roozbehani B, Shishehsaz MR. Polystyrene pyrolysis using silica-alumina catalyst in fluidized bed reactor. Clean Techn Environ Policy. 2015;17:1847–1860. https://doi.org/10.1007/s10098-015-0899-8
  28. Budsaereechai S, Hunt AJ, Ngernyen Y. Catalytic pyrolysis of plastic waste for the production of liquid fuels for engines. RSC Adv .2019;9:5844–5857. https://doi.org/10.1039/C8RA10058F
  29. Inayat A, Klemencova K, Grycova B, Sokolava B, Lestinsky P. Thermo-catalytic pyrolysis of polystyrene in batch and semi-batch reactors: A comparative study. Waste Manag Res. 2021;39:260–269. https://doi.org/10.1177/0734242X20936746
  30. Hussain Z, Imtiaz M, Naz MY, Khan KM, AbdElSalam NM, Ibrahim KA. Thermal and clinker‐catalyzed pyrolyses of polystyrene waste using the Portland cement solid‐base catalyst. Asia-Pacific J Chem Eng. 2021;16:e2556. https://doi.org/10.1002/apj.2556
  31. Adnan, Shah J, Jan MR. Effect of polyethylene terephthalate on the catalytic pyrolysis of polystyrene: Investigation of the liquid products. J. Taiwan Inst. Chem. Eng. 2015;51:96–102. https://doi.org/10.1016/j.jtice.2015.01.015
  32. Shah J, Jan MR, Adnan. Tertiary recycling of waste polystyrene using magnesium impregnated catalysts into valuable products. JAAP. 2015;114:163–171. https://doi.org/10.1016/j.jaap.2015.05.009
  33. Gonzalez-Aguilar AM, Pérez-García V, Riesco-Ávila JM. A Thermo-Catalytic Pyrolysis of Polystyrene Waste Review: A Systematic, Statistical, and Bibliometric Approach. Polymers. 2023;15(6):1582. https://doi.org/10.3390/polym15061582
  34. Taipe Andagua JG. Obtención de combustibles a partir de residuos de polipropileno reciclado, mediante pirólisis catalítica (Tesis de Pregrado). Latacunga; Ecuador: Universidad de las Fuerzas Armadas ESPE. Extensión; 2021
  35. Sergeev OA, Shashkov AG, Umanskii AS. Thermophysical properties of quartz glass. Journal of Engineering Physics. 1982;43:1375–1383. https://doi.org/10.1007/BF00824797
  36. Pérez Bravo G, Contreras Larios JL, Rodríguez González JF, Estrada Pérez JE. Obtención de estireno a partir de residuos de poliestireno expandido mediante pirolisis catalítica. Revista tediq. 2021:7(7):201–205.
  37. Kannan P, Biernacki JJ, Visco DP. A review of physical and kinetic models of thermal degradation of expanded polystyrene foam and their application to the lost foam casting process. JAAP. 2007;78(1):162–171. https://doi.org/10.1016/j.jaap.2006.06.005
  38. Baldovino-Medrano VG. Diseño de experimentos: una introducción pragmática. Bucaramanga (Colombia): Ediciones UIS, 2023.
  39. Montgomery DC. Design and analysis of experiments. 5th ed. New York: John Wiley; 2001.
  40. Tukey JW. Comparing Individual Means in the Analysis of Variance. Biometrics. 1949;5(2):99-114. https://doi.org/10.2307/3001913
  41. Medina Molano NS, Roa Pinto JS. Efecto de la inhibición del carbazol sobre el hidrocraqueo de fenantreno (Tesis de Pregrado). Bucaramanga, Colombia: Universidad Industrial de Santander; 2017.
  42. Huang J, Li X, Meng H, Tong H, Cai X, Liu J. Studies on pyrolysis mechanisms of syndiotactic polystyrene using DFT method. Chemical Physics Letters. 2020;747:137334. https://doi.org/10.1016/j.cplett.2020.137334
  43. García-Sánchez JT, Mora-Vergara ID, Molina-Velasco DR, Henao-Martínez JA, Baldovino-Medrano VG. Key factors during the milling stage of the seed assisted and solvent-free synthesis of MFI and catalytic behavior in the alkylation of phenol with tert-butyl alcohol. ChemCatChem. 2021;13(16):3713–3730. https://doi.org/10.1002/cctc.202100479
  44. Mercado DF, Ballesteros-Rueda LM, Lizarazo-Gómez CC, Núñez-Rodríguez BE, Arenas-Calderón E, Baldovino-Medrano VG. Synthesis and use of functionalized SiO2 nanoparticles for formulating heavy oil macroemulsions. Chemical Engineering Science. 2022;252:117531. https://doi.org/10.1016/j.ces.2022.117531
  45. Hernández-Maya MS, Espinosa-Lobo CB, Cabanzo-Hernández R, Mejía-Ospino E, Baldovino-Medrano VG. Effects of pH and vanadium concentration during the impregnation of Na-SiO2 supported catalysts for the oxidation of propane. Molecular Catalysis. 2022;520:112158. https://doi.org/10.1016/j.mcat.2022.112158
  46. Loftus GR. On interpretation of interactions. Mem Cogn. 1978;6:312–319. https://doi.org/10.3758/BF03197461
  47. Wagenmakers E-J, Krypotos A-M, Criss AH, Iverson G. On the interpretation of removable interactions: A survey of the field 33 years after Loftus. Mem Cogn. 2012;40:145–160. https://doi.org/10.3758/s13421-011-0158-0
  48. Rosnow RL, Rosenthal R. “Some Things You Learn Aren’t So”: Cohen’s Paradox, Asch’s Paradigm, and the Interpretation of Interaction. Psychol Sci. 1995;6(1):3–9. https://doi.org/10.1111/j.1467-9280.1995.tb00297.x
  49. Sachanen AN, O’Kelly AA. High-Temperature Alkylation of Aromatic Hydrocarbons. Ind Eng Chem. 1941;33(12):1540–1544.
  50. Lu C, Xiao H, Chen X. Simple pyrolysis of polystyrene into valuable chemicals. e-Polymers. 2021;21:428–432. https://doi.org/10.1515/epoly-2021-0037
  51. Adnan, Shah J, Jan MR. Thermo-catalytic pyrolysis of polystyrene in the presence of zinc bulk catalysts. J. Taiwan Inst. Chem. Eng. 2014;45:2494–2500. https://doi.org/10.1016/j.jtice.2014.05.011