Aprovechamiento de la biomasa residual de microalgas en la obtención de hidrolizados proteicos como insumo en la producción de piensos acuícolas
Publicado 2024-11-28
Palabras clave
- Hidrolizado,
- Proteína,
- Aminoácidos,
- Acuicultura
Cómo citar
Derechos de autor 2024 Yudtanduly Acuña, Nidia Casas Forero, María Isabel Benavides Torres, Manuel Eduardo Sierra García
Esta obra está bajo una licencia internacional Creative Commons Atribución-SinDerivadas 4.0.
Resumen
Con el propósito de dar valor agregado a la biomasa residual producida después del proceso de extracción de aceites a partir de microalgas, se desarrolló una metodología para obtener un hidrolizado proteico como fuente de aminoácidos esenciales que podría ser empleado como un ingrediente en la producción de piensos acuícolas. La metodología incluye etapas de cultivo de la microalga, extracción de clorofila, extracción de la proteína e hidrólisis de la proteína.
Descargas
Referencias
- Mishra B, Tiwari A, Mahmoud, AE. Microalgal potential for sustainable aquaculture applications: bioremediation, biocontrol, aquafeed. Clean Technol Environ Policy. 2022;25:1-13. https://doi.org/10.1007/s10098-021-02254-1
- Nagarajan D, Varjani S, Lee DJ, Chang, JS. Sustainable aquaculture and animal feed from microalgae–nutritive value and techno-functional components. Renew. Sustain. Energy Rev. 2021;150:111549. https://doi.org/10.1016/j.rser.2021.111549
- Millamena OM, Coloso RM, Pascual FP. Nutrition in Tropical Aquaculture: essentials of fish nutrition, feeds, and feeding of tropical aquatic species. Aquaculture Department, Southeast Asian Fisheries Development Center; 2002.
- Gasco L, Gai F, Maricchiolo G, Genovese L, Ragonese S, Bottari T, et al. Feeds for the aquaculture sector: Current situation and alternative sources. Berlin, Germany: Springer International Publishing; 2018.
- Fatan NA, Sivajothy K, Yossa R. Comparative estimation of the lysine requirements in two generations of improved strain of Nile tilapia (Oreochromis niloticus) at the grow-out stage. Heliyon. 2023;9(6):e17221. https://doi.org/10.1016/j.heliyon.2023.e17221
- Amin M, Chetpattananondh P, Khan MN, Mushtaq F, Sami, SK. Extraction and quantification of chlorophyll from microalgae Chlorella sp. IOP Conf. Ser. Mater. Sci. Eng. 2018;414(1):012025. https://doi.org/10.1088/1757-899x/414/1/012025
- Taleb A, Legrand J, Takache H, Taha S, Pruvost J. Investigation of lipid production by nitrogen-starved Parachlorella kessleri under continuous illumination and day/night cycles for biodiesel application. J. Appl. Phycol. 2018; 30:761-772. https://doi.org/10.1007/s10811-017-1286-0
- . Mohammadi M, Soltanzadeh M, Ebrahimi AR, Hamishehkar H. Spirulina platensis protein hydrolysates: Techno-functional, nutritional and antioxidant properties. Algal Res. 2022;65:102739. https://doi.org/10.1016/j.algal.2022.102739
- Nagappan S, Das P, AbdulQuadir M, Thaher M, Khan S, Mahata C, et al. Potential of microalgae as a sustainable feed ingredient for aquaculture. J. Biotechnol. 2021;341:1-20. https://doi.org/10.1016/j.jbiotec.2021.09.003
- Li X, Zheng S, Wu G. Nutrition and Functions of Amino Acids in Fish. In Amino Acids in Nutrition and Health: Amino Acids in the Nutrition of Companion, Zoo and Farm Animals; Wu G, Editor. Switzerland: Springer International Publishing; 2021. p. 133–168.
- Siahbalaei R, Kavoosi G, Noroozi M. Protein nutritional quality, amino acid profile, antiamylase and anti-glucosidase properties of microalgae: Inhibition and mechanisms of action through in vitro and in silico studies. LWT. 2021;150:112023. https://doi.org/10.1016/j.lwt.2021.112023
- Ansari FA, Guldhe A, Gupta SK, Rawat I, Bux F. Improving the feasibility of aquaculture feed by using microalgae. Environ Sci Pollut Res. 2021;28(32):43234-43257. https://doi.org/10.1007/s11356-021-14989-x