Vol. 29 Núm. 2 (2016): Revista ION
Artículos

Estimación Robusta para un CSTR Usando Observadores por Modos Deslizantes de Alto orden y un Estimador Basado en Observador

Héctor Botero
Universidad Nacional de Colombia, Sede Medellín
Esteban Jiménez-Rodríguez
Universidad Nacional de Colombia, Sede Medellín
Oscar Jaramillo
Universidad Nacional de Colombia, Sede Medellín
Juan Diego Sánchez Torres
Universidad Jesuita de Guadalajara

Publicado 2016-12-15

Palabras clave

  • Observadores para Procesos Químicos,
  • Diseño de Observadores Robustos,
  • Algoritmos de Modos Deslizantes,
  • Sistemas con Incertidumbre.

Cómo citar

Botero, H., Jiménez-Rodríguez, E., Jaramillo, O., & Sánchez Torres, J. D. (2016). Estimación Robusta para un CSTR Usando Observadores por Modos Deslizantes de Alto orden y un Estimador Basado en Observador. Revista ION, 29(2). https://doi.org/10.18273/revion.v29n2-2016008

Resumen

Este trabajo presenta una estructura de estimación para un reactor de tanque agitado en continuo, la cual se compone de un estimador basado en observador por modos deslizantes acoplado con un observador por modos deslizantes de alto orden. Todo el esquema permite la estimación robusta del estado y algunos parámetros, concretamente la concentración de la masa reactiva, el calor de reacción y el coeficiente global de transferencia de calor, a partir de la medición de las temperaturas al interior del reactor y de la chaqueta. Para verificar los resultados, se realizan pruebas de convergencia de la estructura propuesta, y se presentan simulaciones numéricas con mediciones ruidosas y sin ruido, lo que sugiere la aplicabilidad del enfoque planteado.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1] Walcott BL, Corless MJ, Zak SH. Comparative study of nonlinear state observation techniques. Int J Control. 1987;45:2109–32.

[2] Utkin VI. Sliding Modes in Control and Optimization. SciencesNew York. 1992. 286 p.

[3] Drakunov SV. Sliding-mode observers based on equivalent control method. [1992] Proc 31st IEEE Conf Decis Control. 1992;

[4] Spurgeon SK. Sliding mode observers: a survey. Int J Syst Sci. 2008;39:751–64.

[5] Drakunov SV, Utkin VI. Sliding mode control in dynamic systems. International Journal of Control. 1992. p. 1029–37.

[6] Drakunov S, Utkin V. Sliding mode observers. Tutorial. Proc 1995 34th IEEE Conf Decis Control. 1995;4.

[7] Cruz-Zavala E, Moreno JA, Fridman L. Uniform Second-Order Sliding Mode Observer for mechanical systems. Proceedings of the 2010 11th International Workshop on Variable Structure Systems, VSS 2010. 2010. p. 14–9.

[8] Polyakov A. Fixed-time stabilization of linear systems via sliding mode control. 2012 12th Int Work Var Struct Syst. 2012;1–6.

[9] Boukhobza T, Barbot J-P. High order sliding modes observer. Decision and Control, 1998. Proceedings of the 37th IEEE Conference on. 1998. p. 1912–7 vol.2.

[10] Angulo MT, Moreno JA, Fridman L. Some remarks about the tradeoffs between exactness and robustness in control. Proceedings of IEEE International Workshop on Variable Structure Systems. 2012. p. 82–7.

[11] Barbot J, Djemai M, Boukhobza TT. Sliding Mode Control In Engineering. Marcel Dekker. 2002.

[12] Utkin VI, Guldner J, Shi J. Sliding Mode Control in Electro-Mechanical Systems. Second Edi. (Automation and Control Engineering), editor. 2009.

[13] Levant A. Sliding order and sliding accuracy in sliding mode control. Int J Control. 1993;58(6):1247–63.

[14] Slotine J-JESJ-JE, Hedrick JKHJK, Misawa EAMEA. Nonlinear state estimation using sliding observers. 1986 25th IEEE Conf Decis Control. 1986;25.

[15] Drakunov SV. An adaptive quasioptimal filter with discontinuous parameter. Autom Remote Control. 1983;44:1167–75.

[16] Wang GB, Peng SS, Huang HP. A sliding observer for nonlinear process control. Chem Eng Sci. 1997;52(5):787–805.

[17] Drakunov SV, Law VJ. Parameter Estimation Using Sliding Mode Observers: Application to the Monod Kinetic Model. Chem Prod Process Model. 2007;2(3).

[18] Martínez-Guerra R, Aguilar R, Poznyak A. A new robust sliding-mode observer design for monitoring in chemical reactors. J Dyn Syst Meas Control. 2004;126:473–8.

[19] Sbarciog M, Moreno JA, Vande Wouwer A. Application of super-twisting observers to the estimation of state and unknown inputs in an anaerobic digestion system. Water Sci Technol. 2014;69:414–21.

[20] Botero H, Álvarez H. Non Linear State and Parameters Estimation in Chemical Processes: Analysis and Improvement of Three Estimation Structures Applied to a CSTR. International Journal of Chemical Reactor Engineering. 2011.

[21] Osorio BG, Castro HB, Torres JDS. State and unknown input estimation in a CSTR using higher-order sliding mode observer. 2011 IEEE 9th Latin American Robotics Symposium and IEEE Colombian Conference on Automatic Control, LARC 2011 - Conference Proceedings. 2011.

[22] Fridman L, Shtessel Y, Edwards C, Yan XG. Higher-order sliding-mode observer for state estimation and input reconstruction in nonlinear systems. Int J Robust Nonlinear Control. 2008;18:399–412.

[23] Levant A. Robust exact differentiation via sliding mode technique. Automatica. 1998. p. 379–84.

[24] Bequette BW. Behavior of a CSTR with a recirculating jacket heat transfer system. Proc 2002 Am Control Conf (IEEE Cat NoCH37301). 2002;4.

[25] Poling B, Prausnitz J, O’Connell J. The Properties of Gases and Liquids. McGrawHill; 2001.

[26] Oliveira R, Ferreira EC, Feyo de Azevedo S. Stability, dynamics of convergence and tuning of observer-based kinetics estimators. J Process Control. 2002;12(2):311–23.