Publicado 2018-05-06
Palabras clave
- etileno,
- hidratación,
- tungsteno,
- catalizadores ácidos
Cómo citar
Resumen
Este trabajo se enfoca en la síntesis y la caracterización de dos sistemas ácidos obtenidos por el método de impregnación húmeda incipiente, partiendo de una sal de tungsteno y empleando a los óxidos metálicos ZrO2 y TiO2 como soportes. Los dos sistemas de catalizadores WO3/ZrO2 y WO3/TiO2 se prepararon con cargas de tungsteno de 10, 30 y 40% en peso. Para los dos tipos de catalizadores se determinaron las densidades superficiales, transiciones de fase, estructura morfológica y estabilidad térmica para cada una de las cargas de tungsteno empleadas para preparar los catalizadores. Adicionalmente, se evaluó la actividad catalítica de estos catalizadores sólidos para la hidratación de etileno a etanol en presencia de una mezcla de fases líquida y gaseosa, empleando una relación equimolar de etileno a agua a presiones entre 30 y 40 bar. Los resultados revelaron que los catalizadores que presentaron un mejor desempeño alcanzando una selectividad hacia el etanol de 98%, fueron aquellos con una carga baja de tungsteno (10% en peso) y a una presión de trabajo entre 30 y 40 bar.
Descargas
Referencias
[2] Bedia J, Barrionuevo, R, Rodriguez-Mirasol J, Cordero T. Ethanol dehydration to ethylene on acid carbon catalysts. Applied Catalysis B: Environmental. 2011;103:302–10.
[3] Däumer D, Seifert M, Reschetilowski W. Durability improvements of H-ZSM-5 zeolite for ethanol conversion after treatment with chelating agents, Microporous and Mesoporous Materials. 2016;219:66-76.
[4] Li X, Iglesia E. Selective catalytic oxidation of ethanol to acetic acid on dispersed Mo-V-Nb mixed oxides. Chemistry European Journal. 2007;13:9324-30.
[5] Miller SA. Ethylene and its industrial derivatives. Ernest Benn Editors; 1969.
[6] Maki Y, Sato K, Isobe A, Iwasa N, Fujita S, Shimokawabe, M, et al. Structures of H3PO4 / SiO2 catalysts and catalytic performance in the hydration of ethene. Applied Catalysis A: General. 1998;170:269–75.
[7] Fougret CM, Atkins MP, Hölderich WF. Influence of the carrier on the catalytic performance of impregnated phosphoric acid in the hydration of ethylene. Applied Catalysis A: General. 1999;181:145–56.
[8] Fougret CM, Hölderich WF. Ethylene hydration over metal phosphates impregnated with phosphoric acid. Applied Catalysis A: General. 2001;207:295–301.
[9] Mace C, Bonilla CF. Conversion of ethylene to ethanol. Chemical Engineering Progress. 1954;50:385–95.
[10] Isobe A, Yabuuchi Y, Iwasa N, Takezawa N. Gas-phase hydration of ethene over Me ( HPO4)2·n H2O (Me=Ge , Zr , Ti , and Sn). Applied Catalysis A: General. 2000;195:395– 401.
[11] Okuhara T. Water-tolerant solid acid catalysts. Chemical Reviews. 2002;102:3641–66.
[12] Haining GJ. Olefin hydration process. European Patent Application 0955284 A1. 1999.
[13] Onfroy T, Clet G, Bukallah S, Visser T, Houalla, M. Acidity of titania-supported tungsten or niobium oxide catalysts: correlation with catalytic activity. Applied Catalysis A: General. 2006;298:80–87.
[14] Frampton OD, Feldman J. Process for Preparing Ethanol. United States Patent 3,678,118. 1972.
[15] Chu W, Echizen T, Kamiya Y, Okuhara T. Gasphase hydration of ethene over tungstena– zirconia. Applied Catalysis A: General. 2004;259:199–205.
[16] Katada N, Iseki Y, Shichi A, Fujita N, Ishino I, Osaki K, et al. Production of ethanol by vapor phase hydration of ethene over tungsta monolayer catalyst loaded on titania. Applied Catalysis A: General. 2008;349:55–61.
[17] Kolodziej R, Dutt S. Improve direct hydration processes. Hydrocarbon Processing. 2001;80:103–110.
[18] Llano-Restrepo M, Muñoz-Muñoz YM. Combined chemical and phase equilibrium for the hydration of ethylene to ethanol calculated by means of the Peng–Robinson–Stryjek–Vera equation of state and the Wong–Sandler mixing rules. Fluid Phase Equilibria. 2011;307:45–57.
[19] Naito N, Katada N, Niwa M. Tungsten oxide monolayer loaded on zirconia: determination of acidity generated on the monolayer. Journal of Physical Chemistry B. 1999;103:7206–13.
[20] Smukala J, Span R, Wagner W. New equation of state for ethylene covering the fluid region for temperatures from the melting line to 450K at pressures up to 300 MPa. Journal of Physical and Chemical Reference Data. 2000;29:1053121.
[21] Regalbuto J. in Catalyst Preparation: Science and Engineering. Ed. CRC Press; 2007.
[22] Wachs IE, Kim T, Ross EI. Catalysis science of the solid acidity of model supported tungsten oxide catalysts. Catalisis Today. 2006;116:162–8.
[23] Garrido Pedrosa AM, Souza MJB, Marinkovic BA, Melo DMA, Araujo AS. Structure and properties of bifunctional catalysts based on zirconia modified by tungsten oxide obtained by polymeric precursor method. Applied Catalysis A: General. 2008;342:56–62.
[24] Ushikubo T, Kurashige M, Koyanagi T, Ito H, Watanabe Y. Hydration of ethene over W – P mixed metal oxide catalysts. Catalysis Letters. 2000;69:83–7.
[25] Leghari SAK, Sajjad S, Chen F, Zhang J. WO3/TiO2 composite with morphology change via hydrothermal template-free route as an efficient visible light photocatalyst. Chemical Engineering Journal. 2011;166:906–15.
[26] Vaimakis TC. Thermogravimetry (TG) or Thermogravimetric Analysis (TGA). University of Ioannina; 2013.
[27] Park YM, Chung SH, Eom HJ, Lee JS, Lee KY. Tungsten oxide zirconia as solid superacid catalyst for esterification of waste acid oil (dark oil). Bioresource Technology. 2010;101:6589–93.
[28] Barton DG, Soled SL, Iglesia E. Solid acid catalysts based on supported tungsten oxides. Topics in Catalysis. 1998;6:87–99.
[29] Klobes P, Meyer K, Munro RG. Porosity and Specific Surface Area Measurements for Solid Materials. (National Institute of Standars and Thecnology, 2006).
[30] Chu W, Echizen T, Kamiya Y, Okuhara T. Gasphase hydration of ethene over tungstena – zirconia. Applied Catalysis A: General. 2004;259:199–205. [31] Weissermel K, Arpe HJ. in Química orgánica industrial, Editorial Reverté; 1981.