Vol. 31 Núm. 2 (2018): Revista ION
Artículos

Estudio computacional conformacional, espectroscópico, ONL, HOMO–LUMO y reactividad de 1,3,5-trifenilpirazol

Édgar Fabián Blanco-Acuña
Programa de Química, Universidad del Atlántico, km 7 Vía a Puerto Colombia, Barranquilla-Colombia.
Liddier Pérez-Hincapié
Programa de Química, Universidad del Atlántico, km 7 Vía a Puerto Colombia, Barranquilla-Colombia.
Alfredo Pérez-Gamboa
Programa de Química, Universidad del Atlántico, km 7 Vía a Puerto Colombia, Barranquilla-Colombia.
Grey Castellar-Ortega
Facultad de Ingeniería, Universidad Autónoma del Caribe, calle 90 n.° 46-112, Barranquilla-Colombia.
María Cely-Bautista
Facultad de Ingeniería, Universidad Autónoma del Caribe, calle 90 n.° 46-112, Barranquilla-Colombia.
Portada

Publicado 2019-01-17

Palabras clave

  • química computacional,
  • teoría del funcional de la densidad (DFT),
  • 1,3,5-trifenilpirazol,
  • óptica no lineal,
  • orbitales HOMO-LUMO,
  • descriptores de la reactividad
  • ...Más
    Menos

Cómo citar

Blanco-Acuña, Édgar F., Pérez-Hincapié, L., Pérez-Gamboa, A., Castellar-Ortega, G., & Cely-Bautista, M. (2019). Estudio computacional conformacional, espectroscópico, ONL, HOMO–LUMO y reactividad de 1,3,5-trifenilpirazol. Revista ION, 31(2). https://doi.org/10.18273/revion.v31n2-2018004

Resumen

Los parámetros estructurales de 1,3,5-trifenilpirazol se determinaron con DFT/cam-B3LYP con el conjunto de bases 6-311++G(d,p). Los resultados de la estructura molecular optimizada se presentan y comparan con los datos disponibles de rayos X de la molécula o moléculas muy similares. Se proporciona un análisis completo de los espectros observados de las mediciones espectrales de FT-IR, RMN (1H y 13C) y absorción UV-Vis con TD-DFT en la misma función y conjunto de bases. Los descriptores de reactividad global y local han sido determinados. Las propiedades NLO de esta molécula también fueron investigadas. Las distribuciones de cargas del análisis de poblaciones naturales y el mapa de potencial electrostáticos están correlacionadas. Los resultados calculados y los hallazgos experimentales se discuten y se correlacionan.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1] Schlenker C, Barlier V, Chin S, Whited M, McAnally E, Forrest S, et al. Cascade Organic Solar Cells. Chem. Mater. 2011;23:4132-40.

[2] Morse G, Gantz J, Steirer K, Armstrong N, Bender T. Pentafluorophenoxy Boron Subphthalocyanine (F5BsubPc) as a Multifunctional Material for Organic Photovoltaics. Appl. Mater. Interfaces. 2014;6:1515-24.

[3] Ronchi M, Pizzotti M, Orbelli A, Righetto S, Ugo R, Mussini P, et al. Second-order nonlinear optical (NLO) properties of a multichromophoric system based on an ensemble of four organic NLO chromophores nanoorganized on a cyclotetrasiloxane architecture. J. Phys. Chem. C. 2009; 113: 2745-60.

[4] Andreu R, Garín J, Orduna J, Alcalá R, Villacampa B. Novel NLO-phores with proaromatic donor and acceptor groups. Org. Lett. 2003;5:3143-46.

[5] Ruiz M, Casado J, Hernández V, López J, Orduna J, Villacampa B, et al. Electronic, optical, and vibrational properties of bridged dithienylethylene-based NLO chromophores. J. Phys. Chem. C. 2008;112: 3109-20.

[6] Saravanan S, Balachandran V. Conformational stability, spectroscopic (FT-IR, FT-Raman and UV–Vis) analysis, NLO, NBO, FMO and Fukui function analysis of 4-hexylacetophenone by density functional theory. Spectrochim. Acta A. 2015;138:406-23.

[7] Demircioglu Z, Albayrak C, Büyükgüngör O. The spectroscopic (FT-IR, UV-vis), Fukui function, NLO, NBO, NPA and tautomerism effect analysis of (E)-2-[(2-hydroxy-6-methoxybenzylidene)amino]benzonitrile. Spectrochim. Acta A. 2015;139:539-48.

[8] Gondek E. Photovoltaic solar cells based on pyrazole derivative. Mater. Lett. 2013;112:94-6.

[9] Amudha S, Austin S, Suthanthiraraj R, Maruthamuthu P. Performance characteristics of pyrazole as an effective dopant in a blended polymer electrolyte for nanocrystalline dye-sensitized solar cell applications. Chem. Sci. Trans. 2013;2:S141-S146.

[10] Ocaya R, Al-Sehemi G.A., Al-Ghamdi A, El-Tantawy F, Yakuphanoglu F. “Organic semiconductor photosensors”. Journal of Alloys and Compounds, 2017;702:520-30.

[11] Costa J, Taveira R, Lima C, Mendes A, Santos L. Optical band gaps of organic semiconductor materials. Optical Materials, 2016;58:51-60.

[12] Akhtari K, Hassanzadeh K, Fakhraei B, Fakhraei N, Hassanzadeh H, Zarei A. A density functional theory study of the reactivity descriptors and antioxidant behavior of Crocin. Comput. Theor. Chem. 2013;1013:123-29.

[13] Tathe A, Gupta V, Sekar N. Synthesis and combined experimental and computational investigations on spectroscopic and photophysical properties of red emitting 3-styryl coumarins. Dyes and Pigments. 2015;119:49-55.

[14] Suvitha A, Periandy S, Gayathri P. Vibrational frequency analysis, FT-IR, FT-Raman, ab initio, HF and DFT studies, NBO, HOMO-LUMO and electronic structure calculations on pycolinaldehyde oxime. Spectrochimica Acta A. 2014;117:216-24.

[15] Romani E, Brandán S. Structural and spectroscopic studies of two 1,3-benzothiazole tautomers with potential antimicrobial activity in different media. Prediction of their reactivities. Computational andTheoretical Chemistry, 2015;1061:89-99.

[16] Romani E, Ladetto M, Brandán S. Structural and vibrational studies of the potential anticancer agent, 5-difluoromethyl-1,3,4-thiadiazole-2-amino by DFT calculations. Comput. Theor. Chem. 2013;1011:57-64.

[17] Kutsyna L, Korneeva O. The electronic structure of 1,3,5-triphenylpyrazole. J. App. Spec, 1971;15(2):1027-31.

[18] Akhtari K, Hassanzadeh K, Fakhraei B, Fakhraei N, Hassanzadeh H, Zarei S. A density functional theory study of the reactivity descriptors and antioxidant behavior of Crocin. Comput. Theor. Chem. 2013;1013:123-29.

[19] Nuñez F, Arguello E, Vivas R. Density functional study on electronic structures and reactivity in methyl-substituted chelates used in organic light-emitting diodes. Int. J. Quantum Chem, 2010;110(9):1622-36.

[20] Dennington R, Keith T, Millam J. GaussView, Version 5. Semichem Inc., Shawnee Mission, KS, (2009).

[21] Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, et. al. Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2009.

[22] Paschoal D, Dos Santos H. Assessing the quantum mechanical level of theory for prediction of linear and nonlinear optical properties of push-pull organic molecules. J. Mol. Mod. 2013;19:2079-90.

[23] Wazzan N, Al-Qurashi O, Faidallah H. DFT/ and TD-DFT/PCM calculations of molecular structure, spectroscopic characterization, NLO and NBO analyses of 4-(4-chlorophenyl) and 4-[4-(dimethylamino) phenyl]-2-oxo-1,2,5,6-tetrahydrobenzo[H]quinoline-3-carbonitrile dyes. J. Mol. Liq. 2016;223:29-47.

[24] Gil D, Defonsi M, Estévez-Hernández O, Duque J, Reguera E. Quantum chemical studies on molecular structure, spectroscopic (IR, Raman, UV–Vis), NBO and HOMO-LUMO analysis of 1-benzyl-3-(2-furoyl) thiourea, Spectrochim. Acta A. 2015;145:553-62.

[25] Sundaraganesan N, Ilakiamani S, Saleem H, Wojciechowski P, Michalska D. FT-Raman and FT-IR spectra, vibrational assignments and density functional studies of 5-bromo-2-nitropyridine, Spectrochim. Acta A. 2005;61:2995–3001.

[26] CambridgeSoft. PerkinElmer. Versión 13.0.0.3015. 1996-2012.

[27] Mestrelab Research S.L. Version 60.2.-5475. 2009.

[28] Trotter J. Bond lengths in benzene derivatives: Hybridization or resonance. Tetrahedron. 1960;8:13-22.

[29] Shetty M, Samant S. Sulfamic Acid (H2NSO3H): A low-cost, mild, and efficient catalyst for the synthesis of substituted N-Phenylpyrazoles under solvent-free conditions. Synthetic Commun. 2012;42:1411-18.

[30] Sharma Y. Elementary Organic Spectroscopy, principles and chemical applications. India: Chande & Company Ltd.; 1994.

[31] Krishnakumar V, Manohar S, Nagalakshmi R. Crystal growth and characterization of N-hydroxyphthalimide (C8H5NO3) crystal. Spectrochim. Acta A. 2008;71:110-5.

[32] Ananthnag G, Adhikari A, Balakrishna M. Iron-catalyzed aerobic oxidative aromatization of 1,3,5-trisubstituted pyrazolines. Catal. Commun. 2014;43:240-3.

[33] Nakamichi N, Kawashita Y, Hayashi M. Oxidative aromatization of 1,3,5-Trisubstituted pyrazolines and hantzsch 1,4-dihydropyridines by Pd/C in acetic acid. Org. Lett. 2002;4(22):3955-7.

[34] Han B, Liu Z, Liu Q, Yang L, Liu Z-L, Yu W. An efficient aerobic oxidative aromatization of Hantzsch 1,4-dihydropyridines and 1,3,5-trisubstituted pyrazolines. Tetrahedron. 2006;62(11):2492-96.

[35] Carrillo J, Cossı́o, F, Dı́az-Ortiz A, Gómez-Escalonilla M, Begoña A, Moreno A, Prieto P. A complete model for the prediction of 1H- and 13C-NMR chemical shifts and torsional angles in phenyl-substituted pyrazoles”. Tetrahedron. 2001;57:4179-87.

[36] Begtrup M, Vedsù P, Cabildo P, Claramunt RM, Elguero J, Meutermans W. 13C NMR of pyrazoles. Magn. Reson. Chem. 1992;30:107-68.

[37] Ando W, Sato R, Yamashita M, Akasaka T, Miyazaki H. Quenching of singlet oxygen by 1,3,5-triaryl-2-pyrazolines. J. Org. Chem. 1983;48:542-6.

[38] Arjunan V, Balamourougane P, Kalaivani M, Raj A, Mohan S. Experimental and theoretical quantum chemical investigations of 8-hydroxy-5-nitroquinoline. Spectrochim. Acta A. 2012;96:506-16.

[39] Fukui K. Role of frontier orbitals in chemical reactions. Science. 1982;218:747-54.

[40] López J, Ensuncho A, Robles J. Estudio teórico de la reactividad química y biológica de cisplatino y algunos derivados con actividad anticancerosa. Información Tecnológica. 2013;24(3):3-14.

[41] Pearson R. Hard and soft acids and Basis. J. Am. Chem. Soc. 1963;85(22):3533-39.

[42] Parr R, Pearson R. Absolute hardness: companion parameter to absolute electronegativity. J.Am. Chem. Soc. 1983;105(26):7512-16.

[43] Chandrasekaran K, Kumar R. Structural, spectral, thermodynamical, NLO, HOMO, LUMO and NBO analysis of fluconazole. Spectrochim. Acta A. 2015;150:974-91.