Estudio computacional conformacional, espectroscópico, ONL, HOMO–LUMO y reactividad de 1,3,5-trifenilpirazol

  • Édgar Fabián Blanco-Acuña Programa de Química, Universidad del Atlántico, km 7 Vía a Puerto Colombia, Barranquilla-Colombia.
  • Liddier Pérez-Hincapié Programa de Química, Universidad del Atlántico, km 7 Vía a Puerto Colombia, Barranquilla-Colombia.
  • Alfredo Pérez-Gamboa Programa de Química, Universidad del Atlántico, km 7 Vía a Puerto Colombia, Barranquilla-Colombia.
  • Grey Castellar-Ortega Facultad de Ingeniería, Universidad Autónoma del Caribe, calle 90 n.° 46-112, Barranquilla-Colombia.
  • María Cely-Bautista Facultad de Ingeniería, Universidad Autónoma del Caribe, calle 90 n.° 46-112, Barranquilla-Colombia.

Resumen

Los parámetros estructurales de 1,3,5-trifenilpirazol se determinaron con DFT/cam-B3LYP con el conjunto
de bases 6-311++G(d,p). Los resultados de la estructura molecular optimizada se presentan y comparan
con los datos disponibles de rayos X de la molécula o moléculas muy similares. Se proporciona un análisis
completo de los espectros observados de las mediciones espectrales de FT-IR, RMN (1H y 13C) y absorción
UV-Vis con TD-DFT en la misma función y conjunto de bases. Los descriptores de reactividad global y
local han sido determinados. Las propiedades NLO de esta molécula también fueron investigadas. Las
distribuciones de cargas del análisis de poblaciones naturales y el mapa de potencial electrostáticos
están correlacionadas. Los resultados calculados y los hallazgos experimentales se discuten y se
correlacionan.

Palabras clave: química computacional, teoría del funcional de la densidad (DFT), 1,3,5-trifenilpirazol, óptica no lineal, orbitales HOMO-LUMO, descriptores de la reactividad

Descargas

La descarga de datos todavía no está disponible.

Citas

[1] Schlenker C, Barlier V, Chin S, Whited M,
McAnally E, Forrest S, et al. Cascade Organic
Solar Cells. Chem. Mater. 2011;23:4132-40.
[2] Morse G, Gantz J, Steirer K, Armstrong
N, Bender T. Pentafluorophenoxy Boron
Subphthalocyanine (F5BsubPc) as a
Multifunctional Material for Organic
Photovoltaics. Appl. Mater. Interfaces.
2014;6:1515-24.
[3] Ronchi M, Pizzotti M, Orbelli A, Righetto
S, Ugo R, Mussini P, et al. Second-Order
Nonlinear Optical (NLO) Properties of a
Multichromophoric System Based on an
Ensemble of Four Organic NLO Chromophores
Nanoorganized on a Cyclotetrasiloxane
Architecture. J. Phys. Chem. C. 2009; 113:
2745-60.
[4] Andreu R, Garín J, Orduna J, Alcalá R,
Villacampa B. Novel NLO-phores with
Proaromatic Donor and Acceptor Groups. Org.
Lett. 2003;5:3143-46.
[5] Ruiz M, Casado J, Hernández V, López J,
Orduna J, Villacampa B, et al. Electronic,
Optical, and Vibrational Properties of Bridged
Dithienylethylene-Based NLO Chromophores.
J. Phys. Chem. C. 2008;112: 3109-20.
[6] Saravanan S, Balachandran V. Conformational
stability, spectroscopic (FT-IR, FT-Raman and
UV–Vis) analysis, NLO, NBO, FMO and Fukui
function analysis of 4-hexylacetophenone by
density functional theory. Spectrochim. Acta A.
2015;138:406-23.
[7] Demircioglu Z, Albayrak C, Büyükgüngör O.
The spectroscopic (FT-IR, UV-vis), Fukui
function, NLO, NBO, NPA and tautomerism
effect analysis of (E)-2-[(2-hydroxy-6-
methoxybenzylidene)amino]benzonitrile.
Spectrochim. Acta A. 2015;139:539-48.
[8] Gondek E. Photovoltaic solar cells based on
pyrazole derivative. Mater. Lett. 2013;112:94-
6.
[9] Amudha S, Austin S, Suthanthiraraj R,
Maruthamuthu P. Performance Characteristics
of pyrazole as an effective dopant in a blended
polymer electrolyte for nanocrystalline dyesensitized
solar cell applications. Chem. Sci.
Trans. 2013; 2:S141-S146
[10] Ocaya R, Al-Sehemi G.A., Al-Ghamdi A,
El-Tantawy F, Yakuphanoglu F. “Organic
semiconductor photosensors”. Journal of
Alloys and Compounds, 2017;702:520-30.
[11] Costa J, Taveira R, Lima C, Mendes A, Santos
L. Optical band gaps of organic semiconductor
materials. Optical Materials, 2016;58:51-60.
[12] Akhtari K, Hassanzadeh K, Fakhraei B,
Fakhraei N, Hassanzadeh H, Zarei A. A
density functional theory study of the reactivity
descriptors and antioxidant behavior of Crocin.
Comput. Theor. Chem. 2013;1013:123-29.
[13] Tathe A, Gupta V, Sekar N. Synthesis and
combined experimental and computational
investigations on spectroscopic and
photophysical properties of red emitting 3-styryl
coumarins. Dyes and Pigments. 2015;119:49-
55.
[14] Suvitha A, Periandy S, Gayathri P. Vibrational
frequency analysis, FT-IR, FT-Raman, ab
initio, HF and DFT studies, NBO, HOMOLUMO
and electronic structure calculations on
pycolinaldehyde oxime. Spectrochimica Acta
A. 2014;117:216-24.
[15] Romani E, Brandán S. Structural and
spectroscopic studies of two 1,3-benzothiazole
tautomers with potential antimicrobial activity in
different media. Prediction of their reactivities.
Computational and Theoretical Chemistry,
2015;1061:89-99.
[16] Romani E, Ladetto M, Brandán S. Structural
and vibrational studies of the potential
anticancer agent, 5-difluoromethyl-1,3,4-
thiadiazole-2-amino by DFT calculations.
Comput. Theor. Chem. 2013;1011:57-64.
[17] Kutsyna L, Korneeva O. The electronic
structure of 1,3,5-triphenylpyrazole. J. App.
Spec, 1971;15(2):1027-31.
[18] Akhtari K, Hassanzadeh K, Fakhraei B,
Fakhraei N, Hassanzadeh H, Zarei S. A
density functional theory study of the reactivity
descriptors and antioxidant behavior of Crocin.
Comput. Theor. Chem. 2013;1013:123-29.
[19] Nuñez F, Arguello E, Vivas R. Density functional
study on electronic structures and reactivity in
methyl-substituted chelates used in organic
light-emitting diodes. International Journal of
Quantum Chemistry, 2010;110(9):1622-36.
[20] Dennington R, Keith T, Millam J. GaussView,
Version 5. Semichem Inc., Shawnee Mission,
KS, (2009).
[21] Frisch M, Trucks G, Schlegel H, Scuseria G,
Robb M, Cheeseman J, et. al. Gaussian 09,
Revision A.02, Gaussian, Inc., Wallingford CT,
2009.
[22] Paschoal D, Dos Santos H. Assessing the
quantum mechanical level of theory for
prediction of linear and nonlinear optical
properties of push-pull organic molecules. J.
Mol. Mod. 2013;19:2079-90.
[23] Wazzan N, Al-Qurashi O, Faidallah H. DFT/
and TD-DFT/PCM calculations of molecular
structure, spectroscopic characterization, NLO
and NBO analyses of 4-(4-chlorophenyl) and
4-[4-(dimethylamino) phenyl]-2-oxo-1,2,5,6-
tetrahydrobenzo[h]quinoline-3-carbonitrile
dyes. J. Mol. Liq. 2016;223:29-47.
[24] Gil D, Defonsi M, Estévez-Hernández O,
Duque J, Reguera E. Quantum chemical
studies on molecular structure, spectroscopic
(IR, Raman, UV–Vis), NBO and HOMO-LUMO
analysis of 1-benzyl-3-(2-furoyl) thiourea,
Spectrochim. Acta A. 2015;145:553-62.
[25] Sundaraganesan N, Ilakiamani S, Saleem H,
Wojciechowski P, Michalska D. FT-Raman
and FT-IR spectra, vibrational assignments
and density functional studies of 5-bromo-
2-nitropyridine, Spectrochim. Acta A.
2005;61:2995–3001.
[26] CambridgeSoft. PerkinElmer. Versión
13.0.0.3015. 1996-2012.
[27] Mestrelab Research S.L. Version 60.2.-5475.
2009.
[28] Trotter J. Bond lengths in benzene derivatives:
Hybridization or resonance. Tetrahedron.
1960;8:13-22.
[29] Shetty M, Samant S. Sulfamic Acid (H2NSO3H):
A low-cost, mild, and efficient catalyst for the
synthesis of substituted N-Phenylpyrazoles
under solvent-free conditions. Synthetic
Commun. 2012;42:1411-18.
[30] Sharma Y. Elementary Organic Spectroscopy,
Principles and Chemical Applications. India:
Chande & Company Ltd.; 1994.
[31] Krishnakumar V, Manohar S, Nagalakshmi
R. Crystal growth and characterization of
N-hydroxyphthalimide (C8H5NO3) crystal.
Spectrochim. Acta A. 2008;71:110-5.
[32] Ananthnag G, Adhikari A, Balakrishna M. Ironcatalyzed
aerobic oxidative aromatization
of 1,3,5-trisubstituted pyrazolines. Catal.
Commun. 2014;43:240-3.
[33] Nakamichi, N., Kawashita, Y.;
Hayashi, M. Oxidative Aromatization of
1,3,5-Trisubstituted Pyrazolines and Hantzsch
1,4-Dihydropyridines by Pd/C in Acetic Acid.
Org. Lett. 2002;4(22):3955-57.
[34] Han B, Liu Z, Liu Q, Yang L, Liu Z-L, Yu W.
An efficient aerobic oxidative aromatization
of Hantzsch 1,4-dihydropyridines and
1,3,5-trisubstituted pyrazolines. Tetrahedron.
2006;62(11):2492-96.
[35] Carrillo, J.; Cossı́o, F.; Dı́az-Ortiz, A.; Gómez-
Escalonilla, M., Begoña, A.; Moreno, A.; Prieto,
P. A complete model for the prediction of 1Hand
13C-NMR chemical shifts and torsional
angles in phenyl-substituted pyrazoles”.
Tetrahedron. 2001;57:4179-87.
[36] Begtrup, M.; Vedsù, P.; Cabildo, P.; Claramunt,
R. M.; Elguero, J.; Meutermans, W. 13C NMR of
pyrazoles. Magn. Reson. Chem. 1992;30:107-
168.
[37] Ando W, Sato R, Yamashita M, Akasaka T,
Miyazaki H. Quenching of singlet oxygen
by 1,3,5-triaryl-2-pyrazolines. J. Org. Chem.
1983;48:542-6.
[38] Arjunan V, Balamourougane P, Kalaivani M,
Raj A, Mohan S. Experimental and theoretical
quantum chemical investigations of 8-hydroxy-
5-nitroquinoline. Spectrochim. Acta A.
2012;96:506-16.
[39] Fukui K. Role of frontier orbitals in chemical
reactions. Science. 1982;218:747-54.
[40] J. López, A. Ensuncho, J. Robles. Estudio
Teórico de la Reactividad Química y
Biológica de Cisplatino y algunos Derivados
con Actividad Anticancerosa. Información
Tecnológica. 2013;24(3):3-14.
[41] Pearson R. Hard and Soft acids and Basis. J.
Am. Chem. Soc. 1963;85(22):3533-39.
[42] Parr R, Pearson R. Absolute Hardness:
Companion Parameter to Absolute
Electronegativity. J. Am. Chem. Soc.
1983;105(26):7512-16.
[43] Chandrasekaran K, Kumar R. Structural,
spectral, thermodynamical, NLO, HOMO,
LUMO and NBO analysis of fluconazole.
Spectrochim. Acta A. 2015;150:974-91.
Publicado
2019-01-17
Sección
Artículos