Vol. 32 No. 2 (2019): Revista ION
Articles

Electrochemical detection of hydrogen peroxide using peroxidase from Guinea grass (Panicum maximum) immobilized on screen-printed quantum dots electrodes

Paula Guarín
Universidad Industrial de Santander
Herminsul J. Cano
Universidad Industrial de Santander
John J. Castillo
Universidad Industrial de Santander

Published 2020-03-11

Keywords

  • Biosensor,
  • Peroxidase,
  • Guinea Grass,
  • Hydrogen Peroxide,
  • Quantum Dots.

How to Cite

Guarín, P., Cano, H. J., & Castillo, J. J. (2020). Electrochemical detection of hydrogen peroxide using peroxidase from Guinea grass (Panicum maximum) immobilized on screen-printed quantum dots electrodes. Revista ION, 32(2), 67–76. https://doi.org/10.18273/revion.v32n2-2019007

Abstract

Electrochemical biosensors are analytical tools of fast and reliable response that have acquired interest in the last years due to the possibility of integrating biomolecules and electrodes made of nanometric materials. In this study, an electrochemical biosensor to detect hydrogen peroxide (H2O2) based on Guinea Grass peroxidase (GGP) immobilized on screen-printed quantum dots electrodes (SPQDE) was developed. GGP was partially purified from Guinea grass leaves having a specific activity of 602 U mg-1.
Then, GGP was immobilized by physical adsorption on the surface on SPQDE and the electrochemical behavior was carried out through cyclic voltammetry and chronoamperometry techniques. GGP revealed a well-defined pair of redox signals at 17mV/-141mV corresponding to the redox process of the heme group (Fe2+/Fe3+) of peroxidases. The bioelectrocatalytic reduction of H2O2 has a redox potential of -645 mV vs Ag. This process was controlled by the diffusion of the species on the electrode surface using a scan rate range of 50-500 mV s. Chronoamperometry studies allow us the construction of calibration curves of reduction current vs H2O2 concentration for the determination of analytical parameters such as sensitivity, linear range and minimum detection level. The development of this amperometric biosensor becomes a preliminary step for the construction of a portable and rapid response device for the analysis of H2O2 in samples of environmental and biomedical interest.

Downloads

Download data is not yet available.

References

[1] Moyo M, Okonkwo JO, Agyei NM. An amperometric biosensor based on horseradish peroxidase immobilized onto maize tassel-multi-walled carbon nanotubes modified glassy carbon electrode for determination of heavy metal ions in aqueous solution. Enzyme Microb Technol. 2014;56:28–34.

[2] Shi L, Liu X, Niu W, Li H, Han S, Chen J, et al. Hydrogen peroxide biosensor based on direct electrochemistry of soybean peroxidase immobilized on single-walled carbon nanohorn modified electrode. Biosens Bioelectron. 2009;24(5):1159–63.

[3] Wang Y, Du J, Li Y, Shan D, Zhou X, Xue Z, et al. A amperometric biosensor for hydrogen peroxide by adsorption of horseradish peroxidase onto single-walled carbon nanotubes. Colloids Surf B Biointerfaces. 2012;90:62–7.

[4] Sakharov IY, Vesgac B MK, Galaev IY, Sakharova IV, Pletjushkina OY. Peroxidase from leaves of royal palm tree Roystonea regia: Purification and some properties. Plant Sci. 2001;161(5):853–60.

[5] Centeno DA, Solano XH, Castillo JJ. A new peroxidase from leaves of guinea grass (Panicum maximum): A potential biocatalyst to build amperometric biosensors. Bioelectrochemistry. 2017;116:33-8.

[6] Orduz AE, Gutiérrez JA, Blanco SI, Castillo JJ, Salcedo-reyes JC. Amperometric detection of triclosan with screen-printed carbon nanotube electrodes modified with Guinea Grass (Panicum maximum) peroxidase. 2019;24(2):363–79.

[7] Vargas JA, Castillo JJ. Desarrollo de un prototipo de biosensor basado en peroxidasa de palma real (Roystonea regia) y nanotubos de péptidos inmovilizados sobre electrodos de oro para detección de peróxido de hidrógeno. Av en Quim. 2016;11(3):105–11.

[8] Villamizar EN, Ríos CA, Castillo JJ. A hydrogen peroxide biosensor based on the immobilization of the highly stable royal palm tree peroxidase (Roystonea regia) with chitosan and glutaraldehyde on screen-printed graphene electrodes. J Mex Chem Soc. 2016;60(3):135-40.

[9] Tian K, Nie F, Luo K, Zheng X, Zheng J. A sensitive electrochemiluminescence glucose biosensor based on graphene quantum dot prepared from graphene oxide sheets and hydrogen peroxide. J Electroanal Chem. 2017;801:162–70.

[10] Muthurasu A, Ganesh V. Horseradish Peroxidase Enzyme Immobilized Graphene Quantum Dots as Electrochemical Biosensors. Appl Biochem Biotechnol. 2014;174(3):945–59.

[11] Manan FAA, Hong WW, Abdullah J, Yusof NA, Ahmad I. Nanocrystalline cellulose decorated quantum dots based tyrosinase biosensor for phenol determination. Mater Sci Eng C. 2019;99:37–46.

[12] Tang J, Wang B, Wu Z, Han X, Dong S, Wang E. Lipid membrane immobilized horseradish peroxidase biosensor for amperometric determination of hydrogen peroxide. Biosens Bioelectron. 2003;18(7):867–72.

[13] Cinti S, Arduini F, Vellucci G, Cacciotti I, Nanni F, Moscone D. Carbon black assisted tailoring of Prussian Blue nanoparticles to tune sensitivity and detection limit towards H2O2 by using screen-printed electrode. Electrochem commun. 2014;47:63–6.

[14] Gatselou VA, Giokas DL, Vlessidis AG, Prodromidis MI. Rhodium nanoparticle-modified screen-printed graphite electrodes for the determination of hydrogen peroxide in tea extracts in the presence of oxygen. Talanta. 2015;134:482–7.

[15] Sun J, Fang H, Chen H. Immobilization of horseradish peroxidase on a self-assembled monolayer modified gold electrode for the detection of hydrogen peroxide. Analyst. 1998;123(6):1365–8.

[16] Chen W, Cai S, Ren QQ, Wen W, Zhao YDi. Recent advances in electrochemical sensing for hydrogen peroxide: A review. Analyst. 2012;137(1):49–58.

[17] Xu X, Liu S, Ju H. A Novel Hydrogen Peroxide Sensor via the Direct Electrochemistry of Horseradish Peroxidase Immobilized on Colloidal Gold Modified Screen-printed Electrode. Sensors. 2003;3(9):350–60.

[18] Chen S, Yuan R, Chai Y, Xu L, Wang N, Li X, et al. Amperometric hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase (HRP) on the layer-by-layer assembly films of gold colloidal nanoparticles and toluidine blue. Electroanalysis. 2006;18:471–7.

[19] Uribe PA, Ortiz CC, Centeno DA, Castillo JJ, Blanco SI, Gutierrez JA. Self-assembled Pt screen printed electrodes with a novel peroxidase Panicum maximum and zinc oxide nanoparticles for H2O2 detection. Colloids Surfaces A Physicochem Eng Asp. 2019;561:18–24.

[20] Battistuzzi G, Bellei M, Bortolotti CA, Sola M. Redox properties of heme peroxidases. Arch Biochem Biophys. 2010;500(1):21–36.

[21] Belcarz A, Ginalska G, Kowalewska B, Kulesza P. Spring cabbage peroxidases - Potential tool in biocatalysis and bioelectrocatalysis. Phytochemistry. 2008;69(3):627–36.

[22] Brusova Z, Ferapontova E, Sakharov I, Magner E, Gorton L. Bioelectrocatalysis of Plant Peroxidases Immobilized on Graphite in Aqueous and Mixed Solvent Media. Electroanalysis. 2005;17(5–6):460–8.

[23] Ramírez EA, Granero AM, Zon MA, Fernández H. Development of an Amperometric Biosensor Based on Peroxidases from Brassica napus for the Determination of Ochratoxin a Content in Peanut Samples. J Biosens Bioelectron S. 2011;3:1–6.

[24] Castillo J, Ferapontova E, Hushpulian D, Tasca F, Tishkov V, Chubar T, et al. Direct electrochemistry and bioelectrocatalysis of H2O2 reduction of recombinant tobacco peroxidase on graphite. Effect of peroxidase single-point mutation on Ca2+ modulated catalytic activity. J Electroanal Chem. 2006;588(1):112–21.

[25] Ruzgas T, Csöregi E, Emnéus J, Gorton L, Marko-Varga G. Peroxidase-modified electrodes: Fundamentals and application. Anal Chim Acta. 1996;330(2–3):123–38.

[26] Xu S, Zhang X, Wan T, Zhang C. A third-generation hydrogen peroxide biosensor based on horseradish peroxidase cross-linked to multi-wall carbon nanotubes. Microchim Acta. 2010;172(1–2):199–205.

[27] Zhang H-L, Zou X-Z, Lai G-S, Han D-Y, Wang F. Direct electrochemistry of hemoglobin immobilized on carhon-coated iron nanoparticles for amperometric detection of hydrogen peroxide. Electroanalysis. 2007;19(18):1869–74.

[28] Moyo M, Okonkwo JO, Agyei NM. A novel hydrogen peroxide biosensor based on adsorption of horseradish peroxidase onto a nanobiomaterial composite modified glassy carbon electrode. Electroanalysis. 2013;25(8):1946–54.

[29] Wang Z, Xu Q, Wang H-Q, Yang Q, Yu J-H, Zhao Y-D. Hydrogen peroxide biosensor based on direct electron transfer of horseradish peroxidase with vapor deposited quantum dots. Sensors Actuators B Chem. 2009;138(1):278–82.

[30] Yin H, Ai S, Shi W, Zhu L. A novel hydrogen peroxide biosensor based on horseradish peroxidase immobilized on gold nanoparticles–silk fibroin modified glassy carbon electrode and direct electrochemistry of horseradish peroxidase. Sensors Actuators B Chem. 2009;137(2):747–53.

[31] Kang XB, Pang GC, Liang XY, Wang M, Liu J, Zhu WM. Study on a hydrogen peroxide biosensor based on horseradish peroxidase/GNPs-thionine/chitosan. Electrochim Acta. 2012;62:327–34.

[32] Ma L, Yuan R, Chai Y, Chen S. Amperometric hydrogen peroxide biosensor based on the immobilization of HRP on DNA-silver nanohybrids and PDDA-protected gold nanoparticles. J Mol Catal B Enzym. 2009;56(4):215–20.

[33] Koposova E, Shumilova G, Ermolenko Y, Kisner A, Offenhäusser A, Mourzina Y. Direct electrochemistry of cyt c and hydrogen peroxide biosensing on oleylamine- and citrate-stabilized gold nanostructures. Sensors Actuators B Chem. 2015;207:1045–52.

[34] Ahirwal GK, Mitra CK. Direct electrochemistry of horseradish peroxidase-gold nanoparticles conjugate. Sensors. 2009;9(2):881–94.

[35] Yagati A, Min J, Cho S. Electrosynthesis of ERGO-NP nanocomposite films for bioelectrocatalysis of horseradish peroxidase towards H2O2. J. Electrochem. Soc. 2014;166:133-40.

[36] Zhang Q, Qiao Y, Zhang L, Wu S, Zhou H, Song X. Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized on water soluble sulfonated graphene film via self‐assembly. Electroanalysis. 2011;23:900-6.

[37] Farzana S, Ganesh V, Berchmans S. A sensing platform for direct electron transfer study of horseradish peroxidase. J. Electrochem. Soc. 2013;160:573-80.