Detecção eletroquímica de peróxido de hidrogênio usando Peroxidase imobilizada de capim-da-Guiné (Panicum maximum) em eletrodos impressos em tela de pontos quânticos.
Publicado 2020-03-11
Palavras-chave
- Biossensor,
- Peroxidase,
- Capim Guiné,
- Peróxido de Hidrogênio,
- Pontos Quânticos.
Como Citar
Resumo
Os biossensores eletroquímicos são ferramentas analíticas de resposta rápida e confiável que adquiriram interesse especial nos últimos anos, graças à possibilidade de integrar biomoléculas com eletrodos feitos de materiais nanométricos. Neste trabalho, um biossensor eletroquímico foi desenvolvido para a detecção de peróxido de hidrogênio (H2O2) usando peroxidase do capim-da-Guiné (PPG) imobilizada em eletrodos serigráficos de pontos quânticos (ESPC) serigrafados. O PPG foi isolado e parcialmente purificado a partir de folhas de capim-da-Guiné com atividade específica de 602 U mg-1. Posteriormente, o PPG foi imobilizado na superfície do ESPC por adsorção física e estudo do comportamento eletroquímico foi realizado por voltametria cíclica e cronoamperometria. O PPG revelou um par bem definido de sinais redox em 17mV/-141mV correspondente ao processo redox do grupo heme (Fe2+/Fe3+) de peroxidases. A redução bioeletrocatalítica do H2O2 foi observada com um potencial redox de -645 mV vs. Ag. Esse processo foi controlado pela difusão das espécies na superfície do eletrodo em uma faixa de velocidade de varredura linear de 50-500 mV/s. A cronoamperometria permitiu a construção de curvas de calibração entre a corrente de redução e a concentração de H2O2 para a determinação de parâmetros analíticos como sensibilidade, faixa linear e nível mínimo de detecção. O desenvolvimento deste biossensor amperométrico torna-se uma etapa preliminar para a construção de um dispositivo portátil e de resposta rápida para a análise de H2O2 em amostras de interesse ambiental e biomédico.
Downloads
Referências
[2] Shi L, Liu X, Niu W, Li H, Han S, Chen J, et al. Hydrogen peroxide biosensor based on direct electrochemistry of soybean peroxidase immobilized on single-walled carbon nanohorn modified electrode. Biosens Bioelectron. 2009;24(5):1159–63.
[3] Wang Y, Du J, Li Y, Shan D, Zhou X, Xue Z, et al. A amperometric biosensor for hydrogen peroxide by adsorption of horseradish peroxidase onto single-walled carbon nanotubes. Colloids Surf B Biointerfaces. 2012;90:62–7.
[4] Sakharov IY, Vesgac B MK, Galaev IY, Sakharova IV, Pletjushkina OY. Peroxidase from leaves of royal palm tree Roystonea regia: Purification and some properties. Plant Sci. 2001;161(5):853–60.
[5] Centeno DA, Solano XH, Castillo JJ. A new peroxidase from leaves of guinea grass (Panicum maximum): A potential biocatalyst to build amperometric biosensors. Bioelectrochemistry. 2017;116:33-8.
[6] Orduz AE, Gutiérrez JA, Blanco SI, Castillo JJ, Salcedo-reyes JC. Amperometric detection of triclosan with screen-printed carbon nanotube electrodes modified with Guinea Grass (Panicum maximum) peroxidase. 2019;24(2):363–79.
[7] Vargas JA, Castillo JJ. Desarrollo de un prototipo de biosensor basado en peroxidasa de palma real (Roystonea regia) y nanotubos de péptidos inmovilizados sobre electrodos de oro para detección de peróxido de hidrógeno. Av en Quim. 2016;11(3):105–11.
[8] Villamizar EN, Ríos CA, Castillo JJ. A hydrogen peroxide biosensor based on the immobilization of the highly stable royal palm tree peroxidase (Roystonea regia) with chitosan and glutaraldehyde on screen-printed graphene electrodes. J Mex Chem Soc. 2016;60(3):135-40.
[9] Tian K, Nie F, Luo K, Zheng X, Zheng J. A sensitive electrochemiluminescence glucose biosensor based on graphene quantum dot prepared from graphene oxide sheets and hydrogen peroxide. J Electroanal Chem. 2017;801:162–70.
[10] Muthurasu A, Ganesh V. Horseradish Peroxidase Enzyme Immobilized Graphene Quantum Dots as Electrochemical Biosensors. Appl Biochem Biotechnol. 2014;174(3):945–59.
[11] Manan FAA, Hong WW, Abdullah J, Yusof NA, Ahmad I. Nanocrystalline cellulose decorated quantum dots based tyrosinase biosensor for phenol determination. Mater Sci Eng C. 2019;99:37–46.
[12] Tang J, Wang B, Wu Z, Han X, Dong S, Wang E. Lipid membrane immobilized horseradish peroxidase biosensor for amperometric determination of hydrogen peroxide. Biosens Bioelectron. 2003;18(7):867–72.
[13] Cinti S, Arduini F, Vellucci G, Cacciotti I, Nanni F, Moscone D. Carbon black assisted tailoring of Prussian Blue nanoparticles to tune sensitivity and detection limit towards H2O2 by using screen-printed electrode. Electrochem commun. 2014;47:63–6.
[14] Gatselou VA, Giokas DL, Vlessidis AG, Prodromidis MI. Rhodium nanoparticle-modified screen-printed graphite electrodes for the determination of hydrogen peroxide in tea extracts in the presence of oxygen. Talanta. 2015;134:482–7.
[15] Sun J, Fang H, Chen H. Immobilization of horseradish peroxidase on a self-assembled monolayer modified gold electrode for the detection of hydrogen peroxide. Analyst. 1998;123(6):1365–8.
[16] Chen W, Cai S, Ren QQ, Wen W, Zhao YDi. Recent advances in electrochemical sensing for hydrogen peroxide: A review. Analyst. 2012;137(1):49–58.
[17] Xu X, Liu S, Ju H. A Novel Hydrogen Peroxide Sensor via the Direct Electrochemistry of Horseradish Peroxidase Immobilized on Colloidal Gold Modified Screen-printed Electrode. Sensors. 2003;3(9):350–60.
[18] Chen S, Yuan R, Chai Y, Xu L, Wang N, Li X, et al. Amperometric hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase (HRP) on the layer-by-layer assembly films of gold colloidal nanoparticles and toluidine blue. Electroanalysis. 2006;18:471–7.
[19] Uribe PA, Ortiz CC, Centeno DA, Castillo JJ, Blanco SI, Gutierrez JA. Self-assembled Pt screen printed electrodes with a novel peroxidase Panicum maximum and zinc oxide nanoparticles for H2O2 detection. Colloids Surfaces A Physicochem Eng Asp. 2019;561:18–24.
[20] Battistuzzi G, Bellei M, Bortolotti CA, Sola M. Redox properties of heme peroxidases. Arch Biochem Biophys. 2010;500(1):21–36.
[21] Belcarz A, Ginalska G, Kowalewska B, Kulesza P. Spring cabbage peroxidases - Potential tool in biocatalysis and bioelectrocatalysis. Phytochemistry. 2008;69(3):627–36.
[22] Brusova Z, Ferapontova E, Sakharov I, Magner E, Gorton L. Bioelectrocatalysis of Plant Peroxidases Immobilized on Graphite in Aqueous and Mixed Solvent Media. Electroanalysis. 2005;17(5–6):460–8.
[23] Ramírez EA, Granero AM, Zon MA, Fernández H. Development of an Amperometric Biosensor Based on Peroxidases from Brassica napus for the Determination of Ochratoxin a Content in Peanut Samples. J Biosens Bioelectron S. 2011;3:1–6.
[24] Castillo J, Ferapontova E, Hushpulian D, Tasca F, Tishkov V, Chubar T, et al. Direct electrochemistry and bioelectrocatalysis of H2O2 reduction of recombinant tobacco peroxidase on graphite. Effect of peroxidase single-point mutation on Ca2+ modulated catalytic activity. J Electroanal Chem. 2006;588(1):112–21.
[25] Ruzgas T, Csöregi E, Emnéus J, Gorton L, Marko-Varga G. Peroxidase-modified electrodes: Fundamentals and application. Anal Chim Acta. 1996;330(2–3):123–38.
[26] Xu S, Zhang X, Wan T, Zhang C. A third-generation hydrogen peroxide biosensor based on horseradish peroxidase cross-linked to multi-wall carbon nanotubes. Microchim Acta. 2010;172(1–2):199–205.
[27] Zhang H-L, Zou X-Z, Lai G-S, Han D-Y, Wang F. Direct electrochemistry of hemoglobin immobilized on carhon-coated iron nanoparticles for amperometric detection of hydrogen peroxide. Electroanalysis. 2007;19(18):1869–74.
[28] Moyo M, Okonkwo JO, Agyei NM. A novel hydrogen peroxide biosensor based on adsorption of horseradish peroxidase onto a nanobiomaterial composite modified glassy carbon electrode. Electroanalysis. 2013;25(8):1946–54.
[29] Wang Z, Xu Q, Wang H-Q, Yang Q, Yu J-H, Zhao Y-D. Hydrogen peroxide biosensor based on direct electron transfer of horseradish peroxidase with vapor deposited quantum dots. Sensors Actuators B Chem. 2009;138(1):278–82.
[30] Yin H, Ai S, Shi W, Zhu L. A novel hydrogen peroxide biosensor based on horseradish peroxidase immobilized on gold nanoparticles–silk fibroin modified glassy carbon electrode and direct electrochemistry of horseradish peroxidase. Sensors Actuators B Chem. 2009;137(2):747–53.
[31] Kang XB, Pang GC, Liang XY, Wang M, Liu J, Zhu WM. Study on a hydrogen peroxide biosensor based on horseradish peroxidase/GNPs-thionine/chitosan. Electrochim Acta. 2012;62:327–34.
[32] Ma L, Yuan R, Chai Y, Chen S. Amperometric hydrogen peroxide biosensor based on the immobilization of HRP on DNA-silver nanohybrids and PDDA-protected gold nanoparticles. J Mol Catal B Enzym. 2009;56(4):215–20.
[33] Koposova E, Shumilova G, Ermolenko Y, Kisner A, Offenhäusser A, Mourzina Y. Direct electrochemistry of cyt c and hydrogen peroxide biosensing on oleylamine- and citrate-stabilized gold nanostructures. Sensors Actuators B Chem. 2015;207:1045–52.
[34] Ahirwal GK, Mitra CK. Direct electrochemistry of horseradish peroxidase-gold nanoparticles conjugate. Sensors. 2009;9(2):881–94.
[35] Yagati A, Min J, Cho S. Electrosynthesis of ERGO-NP nanocomposite films for bioelectrocatalysis of horseradish peroxidase towards H2O2. J. Electrochem. Soc. 2014;166:133-40.
[36] Zhang Q, Qiao Y, Zhang L, Wu S, Zhou H, Song X. Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized on water soluble sulfonated graphene film via self‐assembly. Electroanalysis. 2011;23:900-6.
[37] Farzana S, Ganesh V, Berchmans S. A sensing platform for direct electron transfer study of horseradish peroxidase. J. Electrochem. Soc. 2013;160:573-80.