Evaluative analysis of reaction mechanisms to model the combustion of biomass derived gases
Published 2022-07-30
Keywords
- Biomass,
- Syngas,
- Combustion,
- Chemical kinetics,
- Reaction mechanism
- Ignition delay ...More
How to Cite
Copyright (c) 2022 David Sebastian Pérez Gordillo, Juan Miguel Mantilla González
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
A fundamental part in the simulation of combustion processes is to model as accurately as possible the chemical kinetics that take place in the phenomenon. On the other hand, in complex combustion simulations that involve the computational fluid dynamics (CFD) of the system, the computational resource is a critical factor to consider. Based on the above, this study evaluates the performance of four semi-detailed reaction mechanisms (DRM22, C1-C4 from Heghes, GRI 3.0 y Konnov), to model the combustion kinetics of biomass derived syngas in CFD simulations (engines, turbines, burners, among others). The methodology consisted of computational tests to obtain results related to ignition delay. These simulations were carried out in a constant pressure reactor varying different combustion parameters. The results obtained with the semi-detailed mechanisms were compared with those achieved using a detailed mechanism (Westbrook), through the calculation of errors. It was found that the applicability of each kinetic model depends on the process variables analyzed, where the quality of their predictions is always inversely proportional to the hydrogen content in the fuel. It should be noted that the GRI 3.0 mechanism
presented the best overall performance.
Downloads
References
- Cerdá E.Energía obtenida a partir de biomasa. Cuad. Económicos ICE. 2012;(83):117-40. doi.org/10.32796/cice.2012.83.6036
- Monteiro E, Sotton J, Bellenoue M, Moreira N. A, Malheiro S. Experimental study of syngas combustion at engine-like conditions in a rapid compression machine. Exp. Therm. Fluid Sci. 2011;35(7):1473–1479. doi.org/10.1016/j.expthermflusci.2011.06.006
- Pérez Gordillo D. Estudio computacional de la combustión premezclada de un gas producto de la gasificación de biomasa en un motor de combustión interna (MCI) (tesis de maestría en Ingeniería Mecánica). Bogotá, Colombia: Universidad Nacional de Colombia; 2019.
- Martínez JD, Mahkamov K, Andrade RV, Silva Lora E. E.Syngas production in downdraft biomass gasifiers and its application using internal combustion engines. Renewable Energy. 2012;38(1):1–9. doi.org/10.1016/j.renene.2011.07.035
- Tinaut FV, Melgar A, Horrillo A, De La Rosa A. D. Method for predicting the performance of an internal combustion engine fuelled by producer gas and other low heating value gases. Fuel Processing Technology. 2006;87(2):135–142. doi.org/10.1016/j.fuproc.2005.08.009
- Tsiakmakis S, Mertzis D, Dimaratos A, Toumasatos Z, Samaras Z. Experimental study of combustion in a spark ignition engine operating with producer gas from various biomass feedstocks. Fuel. 2014;122:126–139. doi.org/10.1016/j.fuel.2014.01.013
- Fiore M, Magi V, Viggiano A. Internal combustion engines powered by syngas: A review. Applied Energy. 2020;276:115415. doi.org/10.1016/j.apenergy.2020.115415
- Fischer M, Jiang X. An assessment of chemical kinetics for bio-syngas combustion. Fuel. 2014;137:293–305. doi.org/10.1016/j.fuel.2014.07.081
- Gossler H, Deutschmann O. Numerical optimization and reaction flow analysis of syngas production via partial oxidation of natural gas in internal combustion engines. Int. J. Hydrogen Energy. 2015;40(34):11046–11058. doi.org/10.1016/j.ijhydene.2015.06.125
- Dhahak A, Bounaceur R, Le Dreff-Lorimier C, Schmidt G, Trouve G, Battin-Leclerc F. Development of a detailed kinetic model for the combustion of biomass. Fuel. 2019; 242:756–774. doi.org/10.1016/j.fuel.2019.01.093
- Wen GH, Yu S, Reitz R. Computational Optimization of Internal Combustion Engines. USA: Springer; 2011.
- Heghes C. Soot formation modeling during hydrocarbon pyrolysis and oxidation behind shock waves (tesis de doctorado). University of Heidelberg; 2006.
- Turns S. An introduction to combustion, Second ed. USA: Mc Graw Hill; 2000.
- Chi C, Janiga G, Thévenin D. On-the-fly artificial neural network for chemical kinetics in direct numerical simulations of premixed combustion. Combust. Flame. 2021;226:467–477. doi.org/10.1016/j.combustflame.2020.12.038
- Burger C, Zhu W, Ma G, Zhao H, Van Duin ACT, Ju Y. Experimental and computational investigations of ethane and ethylene kinetics with copper oxide particles for Chemical Looping Combustion. Proc. Combust. Inst. 2021. doi.org/10.1016/j.proci.2020.06.006
- Frassoldati A, Faravelli T, Ranzi E. The ignition, combustion and flame structure of carbon monoxide/hydrogen mixtures. Note 1: Detailed kinetic modeling of syngas combustion also in presence of nitrogen compounds. Int. J. Hydrogen Energy. 2007;32(15):3471–3485. doi.org/10.1016/j.ijhydene.2007.01.011
- Poon HM, Pang KM, Ng HK, Gan S, Schramm J. Development of multi-component diesel surrogate fuel models - Part II: Validation of the integrated mechanisms in 0-D kinetic and 2-D CFD spray combustion simulations. Fuel. 2016;181:120–130. doi.org/10.1016/j.fuel.2016.04.114
- Kazakov A, Frenklach M. DRM Mechanism (sitio en internet). University of California at Berkeley. Disponible en: http://combustion. berkeley.edu/drm/. Acceso el 10 de septiembre 2019.
- Frenklach M, Bowman T, Smith G. GRI 3.0 Mechanism (sitio en internet). University of California at Berkeley. Disponible en: http://combustion.berkeley.edu/gri_mech/. Acceso el 10 de septiembre 2019.
- Coppens FHV, De Ruyck J, Konnov AA. The effects of composition on burning velocity and nitric oxide formation in laminar premixed flames of CH4 + H2 + O2 + N2. Combust. Flame. 2007;149(4):409–417. doi.org/10.1016/j.combustflame.2007.02.004
- Westbrook CK, Pitza WJ, Westmoreland PR, Dryer FL, Chaos M, Osswald P, et al. A detailed chemical kinetic reaction mechanism for oxidation of four small alkyl esters in laminar premixed flames. Proc. Combust. Inst. 2009;32(1):221–228. doi.org/10.1016/j.proci.2008.06.106
- Westbrook CK, Pitz WJ, Herbinet O, Curran HJ, Silke EJ. A comprehensive detailed chemical kinetic reaction mechanism for combustion of n-alkane hydrocarbons from n-octane to n-hexadecane. Combust. Flame. 2009;156(1):181–199. doi.org/10.1016/j.combustflame.2008.07.014
- Heywood JB. Internal Combustion Engine Fundamentals. USA: Mc Graw Hill; 1988.
- Gao N, Li A, Quan C, Gao F. Hydrogen-rich gas production from biomass steam gasification in an updraft fixed-bed gasifier combined with a porous ceramic reformer. Int. J. Hydrogen Energy. 2008;33(20):5430–5438. doi.org/10.1016/j.ijhydene.2008.07.033
- Arroyo J, Moreno F, Muñoz M, Monné C, Bernal N. Combustion behavior of a spark ignition engine fueled with synthetic gases derived from biogas. Fuel. 2014;117(Part A):50–58. doi.org/10.1016/j.fuel.2013.09.055
- Zhang F, Yu R, Bai XS. Detailed numerical simulation of syngas combustion under partially premixed combustion engine conditions. Int. J. Hydrogen Energy. 2012;37(22):17285–17293. doi.org/10.1016/j.ijhydene.2012.08.076
- Xu Z. Jia M, Li Y, Chang Y, Xu G, Xu L, et al. Computational optimization of fuel supply, syngas composition, and intake conditions for a syngas/diesel RCCI engine. Fuel. 2018;234:120–134. doi.org/10.1016/j.fuel.2018.07.003
- Brusca S, Chiodo V, Galvagno A, Lanzafame R, Marino Cugno Garrano A. Analysis of reforming gas combustion in Internal Combustion Engine. Energy Procedia. 2014;45:899–908. doi.org/10.1016/j.egypro.2014.01.095
- Przybyla G, Szlek A, Haggith D, Sobiesiak A. Fuelling of spark ignition and homogenous charge compression ignition engines with low calorific value producer gas. Energy. 2016;116:1464–1478. doi.org/10.1016/j.energy.2016.06.036
- Lee HC, Jiang LY, Mohamad AA. A review on the laminar flame speed and ignition delay time of Syngas mixtures. Int. J. Hydrogen Energy. 2014;39(2):1105–1121. doi.org/10.1016/j.ijhydene.2013.10.068