v. 35 n. 1 (2022): Revista ION
Artigos

Análise avaliativa dos mecanismos de reação para modelar a combustão de gases derivados da biomassa

David Sebastian Pérez Gordillo
Universidad Nacional de Colombia
Juan Miguel Mantilla González
Universidad Nacional de Colombia

Publicado 2022-07-30

Palavras-chave

  • Biomassa,
  • Gás de síntese,
  • Combustão,
  • Cinética química,
  • Mecanismo de reação,
  • Atraso na inicialização
  • ...Mais
    Menos

Como Citar

Pérez Gordillo, D. S., & Mantilla González, J. M. (2022). Análise avaliativa dos mecanismos de reação para modelar a combustão de gases derivados da biomassa. REVISTA ION, 35(1), 117–132. https://doi.org/10.18273/revion.v35n1-2022009

Resumo

Parte fundamental na simulação de processos de combustão é modelar com a maior precisão possível a cinética química que ocorre no fenômeno. Por outro lado, em simulações de combustão complexas que envolvem a dinâmica de fluidos computacional (CFD) do sistema, o recurso computacional é um fator crítico a ser levado em consideração. Com base no exposto, este estudo avalia o desempenho de quatro mecanismos de reação semi-detalhados (DRM22, C1-C4 de Heghes, GRI 3.0 e Konnov),
para modelar a cinética de combustão de gases de síntese derivados de biomassa em simulações de CFD. (Motores, turbinas, queimadores, entre outros). A metodologia consiste na realização de testes computacionais para obtenção de resultados relativos à variável de atraso na partida. As ditas simulações foram realizadas em um reator de pressão constante variando diferentes parâmetros de combustão. Os resultados obtidos com os mecanismos semi-detalhados foram comparados com os obtidos com um mecanismo detalhado (Westbrook), calculando os erros. Constatou-se que a aplicabilidade de cada modelo cinético depende das variáveis do processo analisadas, onde a qualidade dos seus as previsões são sempre inversamente proporcionais ao teor de hidrogênio no combustível. Vale ressaltar que o mecanismo GRI 3.0 apresentou o melhor desempenho geral.

Downloads

Não há dados estatísticos.

Referências

  1. Cerdá E.Energía obtenida a partir de biomasa. Cuad. Económicos ICE. 2012;(83):117-40. doi.org/10.32796/cice.2012.83.6036
  2. Monteiro E, Sotton J, Bellenoue M, Moreira N. A, Malheiro S. Experimental study of syngas combustion at engine-like conditions in a rapid compression machine. Exp. Therm. Fluid Sci. 2011;35(7):1473–1479. doi.org/10.1016/j.expthermflusci.2011.06.006
  3. Pérez Gordillo D. Estudio computacional de la combustión premezclada de un gas producto de la gasificación de biomasa en un motor de combustión interna (MCI) (tesis de maestría en Ingeniería Mecánica). Bogotá, Colombia: Universidad Nacional de Colombia; 2019.
  4. Martínez JD, Mahkamov K, Andrade RV, Silva Lora E. E.Syngas production in downdraft biomass gasifiers and its application using internal combustion engines. Renewable Energy. 2012;38(1):1–9. doi.org/10.1016/j.renene.2011.07.035
  5. Tinaut FV, Melgar A, Horrillo A, De La Rosa A. D. Method for predicting the performance of an internal combustion engine fuelled by producer gas and other low heating value gases. Fuel Processing Technology. 2006;87(2):135–142. doi.org/10.1016/j.fuproc.2005.08.009
  6. Tsiakmakis S, Mertzis D, Dimaratos A, Toumasatos Z, Samaras Z. Experimental study of combustion in a spark ignition engine operating with producer gas from various biomass feedstocks. Fuel. 2014;122:126–139. doi.org/10.1016/j.fuel.2014.01.013
  7. Fiore M, Magi V, Viggiano A. Internal combustion engines powered by syngas: A review. Applied Energy. 2020;276:115415. doi.org/10.1016/j.apenergy.2020.115415
  8. Fischer M, Jiang X. An assessment of chemical kinetics for bio-syngas combustion. Fuel. 2014;137:293–305. doi.org/10.1016/j.fuel.2014.07.081
  9. Gossler H, Deutschmann O. Numerical optimization and reaction flow analysis of syngas production via partial oxidation of natural gas in internal combustion engines. Int. J. Hydrogen Energy. 2015;40(34):11046–11058. doi.org/10.1016/j.ijhydene.2015.06.125
  10. Dhahak A, Bounaceur R, Le Dreff-Lorimier C, Schmidt G, Trouve G, Battin-Leclerc F. Development of a detailed kinetic model for the combustion of biomass. Fuel. 2019; 242:756–774. doi.org/10.1016/j.fuel.2019.01.093
  11. Wen GH, Yu S, Reitz R. Computational Optimization of Internal Combustion Engines. USA: Springer; 2011.
  12. Heghes C. Soot formation modeling during hydrocarbon pyrolysis and oxidation behind shock waves (tesis de doctorado). University of Heidelberg; 2006.
  13. Turns S. An introduction to combustion, Second ed. USA: Mc Graw Hill; 2000.
  14. Chi C, Janiga G, Thévenin D. On-the-fly artificial neural network for chemical kinetics in direct numerical simulations of premixed combustion. Combust. Flame. 2021;226:467–477. doi.org/10.1016/j.combustflame.2020.12.038
  15. Burger C, Zhu W, Ma G, Zhao H, Van Duin ACT, Ju Y. Experimental and computational investigations of ethane and ethylene kinetics with copper oxide particles for Chemical Looping Combustion. Proc. Combust. Inst. 2021. doi.org/10.1016/j.proci.2020.06.006
  16. Frassoldati A, Faravelli T, Ranzi E. The ignition, combustion and flame structure of carbon monoxide/hydrogen mixtures. Note 1: Detailed kinetic modeling of syngas combustion also in presence of nitrogen compounds. Int. J. Hydrogen Energy. 2007;32(15):3471–3485. doi.org/10.1016/j.ijhydene.2007.01.011
  17. Poon HM, Pang KM, Ng HK, Gan S, Schramm J. Development of multi-component diesel surrogate fuel models - Part II: Validation of the integrated mechanisms in 0-D kinetic and 2-D CFD spray combustion simulations. Fuel. 2016;181:120–130. doi.org/10.1016/j.fuel.2016.04.114
  18. Kazakov A, Frenklach M. DRM Mechanism (sitio en internet). University of California at Berkeley. Disponible en: http://combustion. berkeley.edu/drm/. Acceso el 10 de septiembre 2019.
  19. Frenklach M, Bowman T, Smith G. GRI 3.0 Mechanism (sitio en internet). University of California at Berkeley. Disponible en: http://combustion.berkeley.edu/gri_mech/. Acceso el 10 de septiembre 2019.
  20. Coppens FHV, De Ruyck J, Konnov AA. The effects of composition on burning velocity and nitric oxide formation in laminar premixed flames of CH4 + H2 + O2 + N2. Combust. Flame. 2007;149(4):409–417. doi.org/10.1016/j.combustflame.2007.02.004
  21. Westbrook CK, Pitza WJ, Westmoreland PR, Dryer FL, Chaos M, Osswald P, et al. A detailed chemical kinetic reaction mechanism for oxidation of four small alkyl esters in laminar premixed flames. Proc. Combust. Inst. 2009;32(1):221–228. doi.org/10.1016/j.proci.2008.06.106
  22. Westbrook CK, Pitz WJ, Herbinet O, Curran HJ, Silke EJ. A comprehensive detailed chemical kinetic reaction mechanism for combustion of n-alkane hydrocarbons from n-octane to n-hexadecane. Combust. Flame. 2009;156(1):181–199. doi.org/10.1016/j.combustflame.2008.07.014
  23. Heywood JB. Internal Combustion Engine Fundamentals. USA: Mc Graw Hill; 1988.
  24. Gao N, Li A, Quan C, Gao F. Hydrogen-rich gas production from biomass steam gasification in an updraft fixed-bed gasifier combined with a porous ceramic reformer. Int. J. Hydrogen Energy. 2008;33(20):5430–5438. doi.org/10.1016/j.ijhydene.2008.07.033
  25. Arroyo J, Moreno F, Muñoz M, Monné C, Bernal N. Combustion behavior of a spark ignition engine fueled with synthetic gases derived from biogas. Fuel. 2014;117(Part A):50–58. doi.org/10.1016/j.fuel.2013.09.055
  26. Zhang F, Yu R, Bai XS. Detailed numerical simulation of syngas combustion under partially premixed combustion engine conditions. Int. J. Hydrogen Energy. 2012;37(22):17285–17293. doi.org/10.1016/j.ijhydene.2012.08.076
  27. Xu Z. Jia M, Li Y, Chang Y, Xu G, Xu L, et al. Computational optimization of fuel supply, syngas composition, and intake conditions for a syngas/diesel RCCI engine. Fuel. 2018;234:120–134. doi.org/10.1016/j.fuel.2018.07.003
  28. Brusca S, Chiodo V, Galvagno A, Lanzafame R, Marino Cugno Garrano A. Analysis of reforming gas combustion in Internal Combustion Engine. Energy Procedia. 2014;45:899–908. doi.org/10.1016/j.egypro.2014.01.095
  29. Przybyla G, Szlek A, Haggith D, Sobiesiak A. Fuelling of spark ignition and homogenous charge compression ignition engines with low calorific value producer gas. Energy. 2016;116:1464–1478. doi.org/10.1016/j.energy.2016.06.036
  30. Lee HC, Jiang LY, Mohamad AA. A review on the laminar flame speed and ignition delay time of Syngas mixtures. Int. J. Hydrogen Energy. 2014;39(2):1105–1121. doi.org/10.1016/j.ijhydene.2013.10.068