Vol. 35 No. 1 (2022): Revista ION
Articles

Exploratory Study and Construction of Polymeric Membranes of PLA and PMMA with Lignocelulosic Byproducts

LAMIA ZUNIGA LINAN
Universidade Federal do Maranhão; Departamento de Engenharia Química
Denilson Moreira Santos, Dr.
Curso de Design; Universidade Federal do Maranhão (UFMA), Av. dos Portugueses 1966, Bacanga – CEP 65080-805, São Luís –MA - Brasil
José Roberto Rodrígues, Dr.
Departamento de Engenharia Química; Universidade Federal do Maranhão (UFMA), Av. dos Portugueses 1966, Bacanga – CEP 65080-805, São Luís –MA - Brasil

Published 2022-10-28

Keywords

  • Polymeric composites,
  • Lignocellulosic fillers,
  • Mechanical properties,
  • Biodegradability

How to Cite

LINAN, L. Z., Moreira Santos, D., & Roberto Rodrígues, J. (2022). Exploratory Study and Construction of Polymeric Membranes of PLA and PMMA with Lignocelulosic Byproducts. Revista ION, 35(1), 43–66. https://doi.org/10.18273/revion.v35n1-2022004

Abstract

Brazil generates high amount of residual biomass as a result of the sugar, ethanol and açaí berry beverage industries. Thus, in-depth studies about exploitation of these biological resources are highly relevant considering the environmental impact caused for the inappropriate management of this waste.
In this work, polymeric membranes of Polymethyl methacrylate (PMMA) and Polylactic acid (PLA) with lignocellulosic fillers, such as açaí fiber and lignin from sugar cane bagasse were built by solution molding
technique, introducing castor oil as a coupling agent. Through the testing tensile strength, it was possible to assess the Young´s modulus, the deformation and the ductility of the materials. In general, in polymer/fiber membranes the percentage of humidity absorption increased in comparison to the polymer however, the mechanical strength of the polymer was preserved. On the other hand, polymer/lignin membranes were more strength than the polymer. The alkaline pretreatment on the fibers had a positive effect, which promoted the integration of greater fiber amount in the ensemble and increased the biodegradability.
The microscope images showed that the fillers in the membranes remained evenly distributed, moreover at breaking point thus, the mechanical strength of the composite was a result of the combined effect of the matrix/fillers.

Downloads

Download data is not yet available.

References

  1. Yuyama LKO, Aguiar JPL, Filho DFS, Yuyama KMJ, Fávaro DIT, Vasconcellos MBA, et al. Caracterização físico-química do suco de açaí de Euterpe precatória mart. oriundo de diferentes ecossistemas amazônicos. Acta Amaz. 2011;41(4):545–52.
  2. Dos Santos TG, Oyama HAK, Amorim de Menezes AJE, Palha PM. Análise da produção e comercialização de açaí no estado do Pará, Brasil. Int. J. Dev. Res. 2020;10(4):35215–21.
  3. Cruz Pessoa JD, Arduin M, Martins MA, Urano De Carvalho E. Characterization of açaí (E. oleracea) fruits ans its processing residues. Braz. Arch. Biol. Technol. 2010;53(6):1451-60.
  4. Rowell RM, Han JS, Rowell JS.Characterizationand factors effecting fiber properties. Natural Polymers and Agrofibers Composites, São Carlos, 2000. Disponível em: https://www.researchgate.net/publication/237255433_Characterization_and_Factors_Effecting_Fiber_Properties.
  5. Lima Junior UM. Fibras de semente do açaizeiro (Euterpe oleracea mart.) avaliação quanto ao uso como reforço de compósitos fibrocimentícios. (dissertação de mestrado) Porto Alegre, Brasil: Pontifícia Universidade Católica de Rio Grande do Sul; 2007.
  6. Menezes FF. Caracterização do resíduo da hidrólise enzimática de bagaço de cana-deaçúcar e da lignina kraft lignoboost de eucalipto e de suas resinas fenólicas (tese doutorado) Campinas, Brasil: Universidade Estadual de Campinas; 2018.
  7. Tortola M, Cavalieri F, Mosesso P, Ciaffardini F, Melone F, Crestini C. Ultrasound driven assembly of lignin into microcapsules for store and delivery of hydrophobic molecules. Biomacromolecules. 2014;15:1634–43.
  8. Janković A, Eraković S, Ristoscu C, Mihailescu SN, Duta L, Visan A, et al. Structural and biological evaluation of lignin addition to simple and silver-doped hydroxyapatite thin films synthesized by matrix-assisted pulsed laser evaporation. J. Mater. Sci-Mater. M. 2015;26(1):5333-y.
  9. Kai D, Jiang S, Low Zw, Loh XJ. Engineering highly stretchable lignin-based electrospun nanofibers for potencial biomedical applications. J. Mater. Chem. B. 2015;3:6194-y.
  10. Pouteau C, Dole P, Cathala B, Averous L, Boquillon N. Antioxidant properties of lignin in polypropylene. Polym. Degrad. Stabil. 2003;81:9-18.
  11. Azadfar M, Gao AH, Bule MV, Chen SI. Structural characterization of lignin: a potential source of antioxidants guaiacol and 4 – vinylguaiacol. Int. J. Biol. Macromol. 2015;75:58-66.
  12. Morandim–Giannetti A, Agnelli JAM, Lancas BZ, Magnabosco R, Casarin SA, Bettini SHP. Lignin as additive in polypropylene/coir composites: thermal, mechanical and morphological properties. Carbohydr. Polym. 2012;87:2563–68.
  13. Domenek S, Louaifi A, Guinault A, Baumberger S. Potential of lignins as antioxidante additive inactive biodegradable packaging materials. J. Polym. Environ. 2013;21:692–701.
  14. Zuniga LL, Lima NMN, Tovar LP, Manenti F, Maciel Filho R, Wolf Maciel MR, et al. Pilotplant simulation, experimental campaign and rigorous modeling of a batch MMA polymerization reactor for the fabrication of bone tissue. Lockhart BID, Fairweather M, editors. England: Elsevier: 2012. p. 1352-56.
  15. Reffinatti D, Sonzogni A, Manenti F, Lima NMM, Zuniga Linan L, Maciel Filho R. Modeling and simulation of Poly(L-Lactide) polymerization in batch reactor. Chem. Eng. Trans. 2014;37:691-96.
  16. Brito PR De O. Perfis de polietileno reciclado, recarregado com fibra de açaí (dissertação de Mestrado) Belém, Brasil: Universidade Federal do Pará; 2012.
  17. Chacón C, Sabino M, Perez N. Síntesis y caracterización de hidrogeles interpenetrados en base a acrilamida usando lignina como fase interpenetrada. Rev. Latinoam. de Metal. y Mater. 2011;S3:24-25.
  18. Wang L, Tong Z, Ingram LO, Cheng Q, Matthews S. Green composites of Poly (lactic acid) and sugarcane bagasse residues from Bio-refinery processes. J. Polym. Environ. 2013;21:780-88.
  19. Poletto M. Compósitos termoplásticos com madeira – uma breve revisão. Revista interdisciplinar de Ciência Aplicada. 2017;2(4):42-48.
  20. Oliveira DC. Biocompósitos a partir de “polietileno verde”, óleos vegetais, macro e nano fibras de curauá (tesis doutorado) São Carlos, Brasil: Universidade de São Paulo; 2014.
  21. Huang HX, Zhang JJ. Effects of filler and polymer-filler interactions on rheological and mechanical properties of HDPEwood composites. J. Appl. Polym. Sci. 2009;111:2806-12.
  22. Poletto M, Zattera AJ, Santana RMC. Effect of natural oils on the thermal stability and degradation kinetics of recycled polypropylene wood flour composites. Polym. Compos. 2014;1935-42.
  23. Kabir MM, Wang H, Lau KT, Cardona F. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Compos. B. Eng. 2012;43:2883–92.
  24. Mahjoub R, Yatim JM, Sam ARM, Hashemi SH., Tensile properties of kenaf fiber due to various conditions of chemical fiber surface modifications. Constr. Build. Mater. 2014;55:103-113.
  25. Zuniga LL, Lima NMN, Maciel Filho R, Sabino MA, Kozlowski MT, Manenti F. Pilotscale synthesis and rheological assessment of poly(methyl methacrylate) polymers: Perspectives for medical application. Mater. Sci. Eng. C. Mater Biol Appl. 2015;51:107-16.
  26. Gehlen LR. Efeito da utilização de fibras lignocelulósicas (acaí e carauá) em compósitos com matriz de resina poliéster insaturado. (dissertação de mestrado) Curitiba, Brasil: Universidade Federal do Paraná; 2014.
  27. Zuniga LL, Lima NMN, Menezes FF, Maciel Filho R, Bartoli JR. Determination of the appropriated composition of the blends poly(lactic acid)/poly(methyl methacrylate) for the construction of scaffolds. Rheology and statistical assessment. In: Zinani F, editor. VIII Brazilian conference on rheology; 2018 Jun 18-20; São Leopoldo-RS, Brasil; 2018. p. 1352-56.
  28. Barros NBD, Spacino SI, Bruns RE. Como fazer experimentos: Pesquisa desenvolvimento na ciência e na indústria. Brasil: UNICAMP; 2003.
  29. ASTM International. Standard test method for moisture absorption properties and equilibrium conditioning of polymer matrix composite materials. ASTM D5229/D229M-14. Estados Unidos; 2014.
  30. International Organization for Standardization. Plastic – Determination of tensile properties. Part 5: Test conditions for unidirectional fibre-reinforce plastic composites. ISO 527-5: 2009(E). Suiça; 2009.
  31. British Standard. Plastic-Determination of tensile properties. Part 5: Test conditions for films and sheets. BS EN ISO 527-3: 1996. Inglaterra; 2009.
  32. De Lemos AL, Martins R. Desenvolvimento e caracterização de compósitos à base de poli(ácido láctico) e fibras naturais. Polímeros. 2014;24(2):190-197.
  33. Agrawal P, Araujo EM, Meio TJA. Reometria de torque, propriedades mecânicas e morfologia de blendas compatibilizadas de PA6/PEAD. Polímeros. 2008;18(2):152-157.
  34. Barreto AC, Costa MM, Sombra ASB, Rosa DS, Nascimento RF, Mazetto SE, et al. Chemically modified banana fiber: structure, dielectrical properties and biodegradability. J. Polym. Environ. 2010;18:523-531.
  35. Wang W, Sain M, Cooper PA. Study of moisture absorption in natural fiber plastic composites. Compos. Sci. Technol. 2006;66(3):379-86.
  36. Megiatto Jr JD. Fibras de sisal: estudo de propriedades e modificações químicas visando aplicações em compósitos de matriz fenólica (tese de doutorado) São Carlos, Brasil: Universidade de São Paulo; 2006.
  37. Sanchez SEM, Cavani CS, Leal CV, Sanchez CG. Compósito de resina de poliéster insaturado com bagaço de cana-de-açúcar: influência do tratamento das fibras nas propriedades. Polímeros. 2010;20(3):194-200.
  38. Martins MA, Pessoa JDC, Gonçalves PS, Souza FI, Mattosso LHC. Thermal and mechanical properties of the acai fiber/natural rubber composites. J. Mater. Sci. 2008;43:6531-38.