Investor studies for the production of furfural-ethanol and boards from bagasse of sugar cane
Published 2021-08-13
Keywords
- Bagasse,
- Furfural,
- Ethanol,
- Revamp,
- Investment
How to Cite
Abstract
Nowadays, take advantage of facilities in the industry to modify, reanimation or revamping their productions
is necessary for the reduction of investment costs and the increase of the availability of the plants. In this sense, the investigation aims to carry out a prior investor study in a sugar complex with installed derivatives plants, for the joint production of furfural, ethanol, and boards from bagasse, considering the revamp of the industrial facility. For this, it starts from modifications and results obtained by Mesa [1], in the bagasse fractionation stage towards getting glucose, xylose, and furfural and the use of residues in the board plant for Morales-Zamora [2]. Economic pre-feasibility studies are carried out for the plants separately along with the integration and revamp proposal. In the integrated analysis, a factorial design is proposed 24 considering the influence of the variables: sugarcane flow, ethanol flow, reliability and prices, for an optimistic scenario of prices and capacities. The economic results are favored for increases in the flow of ethanol, with a lower flow of cane, considering the reliability with the reconversion and with increases in the price of sugar. The reconversion towards obtaining sugar, electricity, furfural, boards and ethanol will be able to rescue installed plants and equipment, which would have an impact on minimizing investments, as well as a prospective development of adaptation of the sugar industry towards the concept of biorefinery.
Downloads
References
[2] Morales-Zamora M, González-Suárez E, Mesa-Garriga L. Advances in obtaining fibreboards from lignocellullosic residual mixtures of bagasse. Afinidad. 2016;73(575):205-209.
[3] Gálvez LO. La producción diversificada de la agroindustria de la caña de azúcar. Manual de los derivados de la caña de azúcar. 3 ed. La Habana, Cuba. Editorial ICIDCA; 2000.
[4] González E. Asimilación (Adopción) y reconversión de tecnologías para la producción de Biocombustibles. España, CYTED Ediciones cooperativas; 2008.
[5] Kaylen M, Van D, DL. Choi YS, Economic feasibility of producing ethanol from lignocellulosic feedstock. Bioresorurce Technology. 2000; 72(1):19-32.
[6] Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR and Lee YY. Comparative sugar
recovery data from laboratory scale application of leading pretreatment technologies to corn
stover. Biores Technol. 2005;96(18):2026-2032.
[7] Caye M. Drapcho, Nghiem Nhuan, Terry H. Walker. Biofuels Engineering Process Technology. The McGraw-Hill Companies. 2008. DOI: 10.1036/0071487492.
[8] Zhou, Xi; Xu, Yong. Integrative process for sugarcane bagasse biorefinery to co-produce xylooligosaccharides and gluconic acid. Bioresource Technology. 2019;282: 81-87.
[9] Morales M, Verelst H, Mesa L, and Gonzales E. Simulation of furfural production process
for revamping with ethanol technology from lignocellulosic residuals, Chemical Engineering Transactions. 2010; 21: 967- 972. DOI:10.3303/CET1021162.
[10] Candido RG, Gonçalves AR. Evaluation of two different applications for cellulose isolated
from sugarcane bagasse in a biorefinery concept. Industrial Crops and Products. 2019;142:111616.
[11] Sakdaronnarong C, Pipathworapoom W, Vichitsrikamol T, Sema T, Posoknistakul P, Koo-amornpattana W, Laosiripojana N. Integrative process for a sugarcane bagasse biorefinery to produce glucose, bio-oil and carbon microspheres. Process Safety and Environmental Protection. 2018;116:1-13.
[12] Hsu TA. Pretreatment of biomass. Handbook on bioethanol: production and utilization. USA, Ed. Taylor & Francis; 1996. p.179-212.
[13] Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource technology. 2002;83(1):1-11.
[14] Larsson M, Galbe M, Zacchi G. Recirculation of process water in the production of ethanol from softwood. Bioresource Technology. 1997;60(2):143-151.
[15] Lenihan P, Orozco A, O’Neill E, Ahmad MNM, Rooney DW, Walker GM. Dilute acid hydrolysis of lignocellulosic biomass. Chemical Engineering Journal. 2010; 156: 395–403.
[16] Singh A. Kumudeswar D, and Durlubh K. Sharma. Integrated Process for Production of Xylose, Furfural, and Glucose from Bagasse by Two-step Acid Hydrolysis. Ind. Eng. Chem. Prod. Res. Dev. 1984; 23(2):257-262.
[17] Piñeros-Castro Y, Amparo Velasco G, Proaños J, Cortes W, Ballesteros I. Producción de azúcares fermentables por hidrólisis enzimática de cascarilla de arroz pretratada mediante explosión con vapor. rev.ion.2011;24(2):23-28.
[18] Pires Nogueira D, Ferreira Rosa PR, Seolatto AA, Galeano Suarez CA, Ferreira Freitas F. Saccharification of Orange Bagasse Pretreated with Calcium Hydroxide using an enzymatic blend Diluted Hydrochloric Acid. rev. ion. 2019;32(1):75-85. doi:10.18273/revion. v32n1-2019007
[19] Mesa L, González E, Cara C, Ruiz E, Romero I. Castro E. Preliminary evaluation of organosolv pre-treatment of sugar cane bagasse for glucose production: Application of 23 experimental design. Appl Energy. 2010;87: 109-114.
[20] Mesa L, González E, Cara C, Ruiz E, Castro E, Mussatto SI. An approach to optimization of enzymatic hydrolysis from sugarcane bagasse based on organosolv pretreatment. Journal of Chemical Technology & Biotechnology. 2010;85(8):1092-1098.
[21] Aguilar R, Ramírez JA, Garrote G. Kinetic study of the acid hydrolysis of sugar cane bagasse. J. Food Engineering. 2002;55:309.
[22] Cheng KK, Cai BY, Zhang JA, Ling HZ, Zhou YJ, Ge JP, Xu JM. Sugarcane bagasses hemicellulose hydrolysate for ethanol production by acid recovery process. Biochem. Eng. J. 2008;38(1):105-109.
[23] Linde M, Jakobsson E, Galbe M, Zacchi G. Steam pretreatment of dilute H2SO4- impregnated wheat straw and SSF with low yeast and enzyme loadings for bioethanol production. Biomass and Bioenergy. 2008;32(4):326-332.
[24] Xu C, Zhang J, Zhang Y, Guo Y, Xu H, Xu J, Wang Z. Enhancement of high-solids enzymatic hydrolysis efficiency of alkali pretreated sugarcane bagasse at low cellulase dosage by fed-batch strategy based on optimized accessory enzymes and additives.
Bioresource technology. 2019;292:121993.
[25] Chandel AK, Garlapati VK, Singh AK, Antunes FAF, da Silva, SS. The pathforward for lignocellulose biorefineries: Bottlenecks, Solutions, and perspective on commercialization, BioresourceTechnology. 2018;264:370-38. doi: https://doi.org/10.1016/j.
biortech.2018.06.004
[26] Morales-Zamora M, Espino-Leal I, Mesa-Garriga L, Acosta-Martínez D, González- Suárez E, Castro-Galiano E. Evaluación de residuales de la hidrólisis ácida del bagazo como productos de alto valor añadido. Afinidad LXVIII. 2011;68(556).
[27] Morales-Zamora M, González-Suárez E. Reliability Assessment on a Diversified Industry from the Revamp of its Facilities. Tecnología Química. 2017;37(1):5-15. DOI: http://dx.doi.org/10.1590/2224-6185.2017.1.1
[28] Morales-Zamora M, de Armas A, Mesa- Garriga L, Acosta Martínez D, González- Suárez E. Advances in the use of the hydrolyzed liquor of bagasse in the fermentation of sugar mixtures. Afinidad. 2018; 75(581):61-65.
[29] Murcia-P JF, Ardila-A AN, Barrera Zapata R. Producción de etanol a partir de piñas de rechazo de cultivos del Chocó. rev. ion. 2020;33(1):47-56. doi:10.18273/revion.v33n1- 2020005