Approach of a mathematical model of macroscopic characteristics of biowaxes produced from palm oil with commercial interest
Published 2022-12-05
Keywords
- Palm oil,
- Hydrotreatment,
- Descriptive statistics,
- Chemometrics,
- Analytical chemistry
How to Cite
Copyright (c) 2022 Cristian Murillo-Méndez, Luis Javier López-Giraldo, Andrés Fernando Ramírez Quintero, Maribel Castañeda-Rodas
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
Biowax obtained by hydrotreatment of vegetable oils are used in the manufacture of cosmetic products. There are various works on the chemical composition of biowax. However, there are no reports of how its macroscopic properties change depending on the chemical composition. Therefore, this work consisted in implementing mathematical models to select biowaxes and predict their desirable characteristics for application in the cosmetic industry. Macroscopic properties (melting point and acidity, saponification, iodine indices) and chemical composition (waxy esters, fatty alcohols, fatty acids, acylglycerides and paraffins) were determined for 34 biowax samples. A descriptive statistical analysis was developed that allowed to organize the biowaxes according to their macroscopic properties, assigning a score related to the quality of the sample; on a scale out of 4, the scores varied between 1.5 and 3.25. Mathematical models were also proposed for each macroscopic property of biowaxes based on their chemical composition. Five biowaxes with the highest score were selected and the physicochemical parameters were calculated through the obtained models, observing a model error of less than 6% in the melting point and acidity index. These selected biowaxes could be used in the formulation of cosmetics of commercial interest.
Downloads
References
- Shalini T, Martin A. Identification, isolation, and heterologous expression of Sunflower wax synthase for the synthesis of tailored wax esters. J Food Biochem [en línea]. 2020;44(10). doi.org/10.1111/jfbc.13433
- Fei T, Wang T. A review of recent development of sustainable waxes derived from vegetable oils. Current Opinion in Food Science. 2017;16:7-14. doi.org/10.1016/j.cofs.2017.06.006
- Aliasl khiabani A, Tabibiazar M, Roufegarinejad L, Hamishehkar H, Alizadeh A. Preparation and characterization of carnauba wax/adipic acid oleogel: A new reinforced oleogel for application in cake and beef burger. Food Chemistry. 2020;333:127446. doi.org/10.1016/j.foodchem.2020.127446
- Liu C, Zheng Z, Meng Z, Chai X, Cao C, Liu Y. Beeswax and carnauba wax modulate the crystallization behavior of palm kernel stearin. LWT. 2019;115:108446. doi.org/10.1016/j.lwt.2019.108446
- de Freitas CAS, de Sousa PHM, Soares DJ, da Silva JYG, Benjamin SR, Guedes MIF. Carnauba wax uses in food – A review. Food Chemistry. 2019;291:38-48. doi: 10.1016/j.foodchem.2019.03.133
- Aboje AA, Kovo AA, Agbo AA, Adeniyi OD. Optimal Process Conditions for Enhanced Co- Solvent Based Transesterification of Tigernut Oil. Nigerian Journal of Engineering and Applied Sciences. 2019;6(1):11-21.
- Shimizu MS, Nomura Y, Bui HS. Effect of Cosmetic Oils on Lipstick Structure and Its Deposit. En: Surface Science and Adhesion in Cosmetics. Mittal KL, Bui HS, editores: Wiley; 2021. p. 35-71. doi.org/10.1002/9781119654926.ch2
- Oliver-Tomas B, Renz M, Corma A. High Quality Biowaxes from Fatty Acids and Fatty Esters: Catalyst and Reaction Mechanism for Accompanying Reactions. Ind Eng Chem Res. 2017;56(45):12870-7. doi.org/10.1021/acs.iecr.7b01794
- Soleimanian Y, Goli SAH, Shirvani A, Elmizadeh A, Marangoni AG. Wax‐based delivery systems: Preparation, characterization, and food applications. Comprehensive Reviews in Food Science and Food Safety. 2020;19(6):2994-3030. doi.org/10.1111/1541-4337.12614
- Wettlaufer T, Hetzer B, Flöter E. Characterization of Oleogels Based on Waxes and Their Hydrolyzates. Eur J Lipid Sci Technol. 2021;123(7):2000345. doi.org/10.1002/ejlt.202000345
- Zhang Z, Ye J, Fei T, Ma X, Xie X, Huang H, et al. Interesterification of rice bran wax and palm olein catalyzed by lipase: Crystallization behaviours and characterization. Food Chemistry. 2019;286:29-37. doi: 10.1016/j.foodchem.2019.01.192
- Caputo D, Casiello M, Laurenza AG, Fracassi F, Fusco C, Nacci A, et al. Preparation of Biowax Esters in Continuous Flow Conditions. ACS Omega. 2019;4(7):12286-92. doi: 10.1021/acsomega.9b00861
- Mosquera Montoya M, Valderrama Villabona M, Ruíz Álvarez E, López Alfonso D, Castro Zamudio LE, Fontanilla CA, et al. Costos de producción para el fruto de palma de aceite y el aceite de palma en 2015: estimación en un grupo de productores colombianos. Revista Palmas. 2017;38(2):10-26. https://publicaciones.fedepalma.org/index.php/palmas/article/view/12122
- Lugo Arias ER, Sáenz Zapata JA, Lugo Arias JL. La productividad como determinante de la competitividad de las exportaciones de aceite de palma del departamento del Magdalena Colombia, 2007-2015. Saber Cienc Lib. 2018;13(1):145-63. doi: 10.18041/2382-3240/saber.2018v13n1.2088
- Diarte C, Romero A, Romero MP, Graell J, Lara I. Chemical and Sensory Characterization of Nine Spanish Monovarietal Olive Oils: An Emphasis on Wax Esters. Agriculture. 2021;11(2):170. doi.org/10.3390/agriculture11020170
- Huynh A, Maktabi B, Reddy CM, O’Neil GW, Chandler M, Baki G. Evaluation of alkenones, a renewably sourced, plant‐derived wax as a structuring agent for lipsticks. Int J Cosmet Sci. 2020;42(2):146-55. doi: 10.1111/ics.12597
- Kanya T, Rao L, Sastry M. Characterization of wax esters, free fatty alcohols and free fatty acids of crude wax from sunflower seed oil refineries☆. Food Chemistry. 2007;101(4):1552-7. doi.org/10.1016/j.foodchem.2006.04.008
- Flöter E, Wettlaufer T, Conty V, Scharfe M. Oleogels—Their Applicability and Methods of Characterization. Molecules. 2021;26(6):1673. doi: 10.3390/molecules26061673
- Papadaki A, Kopsahelis N, Freire DMG, Mandala I, Koutinas AA. Olive Oil Oleogel Formulation Using Wax Esters Derived from Soybean Fatty Acid Distillate. Biomolecules. 2020;10(1):106. doi: 10.3390/biom10010106
- Bharathwaaj R, Nagarajan PK, Kabeel AE, Madhu B, Mageshbabu D, Sathyamurthy R. Formation, characterization and theoretical evaluation of combustion of biodiesel obtained from wax esters of A. Mellifera. Alexandria Engineering Journal. 2018;57(3):1205-15. doi.org/10.1016/j.aej.2017.03.021
- Yao L, Lio J, Wang T, Jarboe DH. Synthesis and Characterization of Acetylated and Stearylyzed Soy Wax. J Am Oil Chem Soc. 2013;90(7):1063-71. doi.org/10.1007/s11746-013-2239-7
- Nasri NS, Ahmed MM, Mohd Noor N, Mohammed J, Hamza UD, Mohd Zain H. Hydrophobicity Characterization of Bio-Wax Derived from Taro Leaf for Surface Coating Applications. AMR. 2014;1043:184-8. doi.org/10.4028/www.scientific.net/AMR.1043.184
- Wang P, Qian X, Shen J. Superhydrophobic Coatings with Edible Biowaxes for Reducing or Eliminating Liquid Residues of Foods and Drinks in Containers. BioRes. 2017;13(1):1-2. doi: 10.15376/biores.13.1.1-2
- Chuberre B, Araviiskaia E, Bieber T, Barbaud A. Mineral oils and waxes in cosmetics: an overview mainly based on the current European regulations and the safety profile of these compounds. J Eur Acad Dermatol Venereol. 2019;33(S7):5-14. doi: 10.1111/jdv.15946
- Merchán Sandoval J, Carelli A, Palla C, Baümler E. Preparation and characterization of oleogel emulsions: A comparative study between the use of recovered and commercial sunflower waxes as structuring agent. Journal of Food Science. 2020;85(9):2866-78. doi: 10.1111/1750-3841.15361
- Kaliyadan F, Kulkarni V. Types of Variables, Descriptive Statistics, and Sample Size. Indian Dermatology Online Journal. 2019;10(1):82-6. doi: 10.4103/idoj.IDOJ_468_18
- Mishra P, Pandey C, Singh U, Gupta A, Sahu C, Keshri A. Descriptive statistics and normality tests for statistical data. Ann Card Anaesth. 2019;22(1):67. doi: 10.4103/aca.ACA_157_18
- Li J, Liu J, Sun X, Liu Y. The mathematical prediction model for the oxidative stability of vegetable oils by the main fatty acids composition and thermogravimetric analysis. LWT. 2018;96:51-7. doi.org/10.1016/j.lwt.2018.05.003