v. 35 n. 2 (2022): Revista ION
Artigos

Abordagem de um modelo matemático de características macroscópicas de bioceras produzidas a partir de óleo de palma com interesse comercial

Cristian Murillo-Méndez
UIS
Luis Javier López-Giraldo
UIS
Andrés Fernando Ramírez Quintero
UIS
Maribel Castañeda-Rodas
ECOPETROL

Publicado 2022-12-05

Palavras-chave

  • Estatística descritiva,
  • Hidrotratamento,
  • Óleo de palma,
  • Química Analítica,
  • Quimiometria

Como Citar

Murillo-Méndez, C., López-Giraldo, L. J., Ramírez Quintero, A. F., & Castañeda-Rodas, M. (2022). Abordagem de um modelo matemático de características macroscópicas de bioceras produzidas a partir de óleo de palma com interesse comercial. REVISTA ION, 35(2), 59–69. https://doi.org/10.18273/revion.v35n2-2022005

Resumo

biocera obtida por hidrotratamento de óleos vegetais é utilizada na fabricação de produtos cosméticos. Existem vários trabalhos sobre a composição química da biocera. No entanto, não há relatos de como suas propriedades macroscópicas mudam dependendo da composição química. Portanto, este trabalho consistiu na implementação de modelos matemáticos para selecionar bioceras e prever suas características desejáveis para aplicação na indústria cosmética. Propriedades macroscópicas (ponto de fusão e acidez, saponificação, índices de iodo) e composição química (ésteres cerosos, álcoois graxos, ácidos graxos, acilglicerídeos e parafinas) foram determinados para 34 amostras de biocera. Foi desenvolvida uma análise estatística descritiva que permitiu organizar as bioceras de acordo com suas propriedades macroscópicas, atribuindo uma pontuação relacionada à qualidade da amostra; em uma escala de 4, os escores variaram entre 1,5 e 3,25. Modelos matemáticos também foram propostos para cada propriedade macroscópica das bioceras com base em sua composição química. Cinco bioceras com maior pontuação foram selecionadas e os parâmetros físico-químicos foram calculados através dos modelos obtidos, observando-se um erro de modelo menor que 6% no ponto de fusão e índice de acidez. Essas bioceras selecionadas poderão ser utilizadas na formulação de cosméticos de interesse comercial.

Downloads

Não há dados estatísticos.

Referências

  1. Shalini T, Martin A. Identification, isolation, and heterologous expression of Sunflower wax synthase for the synthesis of tailored wax esters. J Food Biochem [en línea]. 2020;44(10). doi.org/10.1111/jfbc.13433
  2. Fei T, Wang T. A review of recent development of sustainable waxes derived from vegetable oils. Current Opinion in Food Science. 2017;16:7-14. doi.org/10.1016/j.cofs.2017.06.006
  3. Aliasl khiabani A, Tabibiazar M, Roufegarinejad L, Hamishehkar H, Alizadeh A. Preparation and characterization of carnauba wax/adipic acid oleogel: A new reinforced oleogel for application in cake and beef burger. Food Chemistry. 2020;333:127446. doi.org/10.1016/j.foodchem.2020.127446
  4. Liu C, Zheng Z, Meng Z, Chai X, Cao C, Liu Y. Beeswax and carnauba wax modulate the crystallization behavior of palm kernel stearin. LWT. 2019;115:108446. doi.org/10.1016/j.lwt.2019.108446
  5. de Freitas CAS, de Sousa PHM, Soares DJ, da Silva JYG, Benjamin SR, Guedes MIF. Carnauba wax uses in food – A review. Food Chemistry. 2019;291:38-48. doi: 10.1016/j.foodchem.2019.03.133
  6. Aboje AA, Kovo AA, Agbo AA, Adeniyi OD. Optimal Process Conditions for Enhanced Co- Solvent Based Transesterification of Tigernut Oil. Nigerian Journal of Engineering and Applied Sciences. 2019;6(1):11-21.
  7. Shimizu MS, Nomura Y, Bui HS. Effect of Cosmetic Oils on Lipstick Structure and Its Deposit. En: Surface Science and Adhesion in Cosmetics. Mittal KL, Bui HS, editores: Wiley; 2021. p. 35-71. doi.org/10.1002/9781119654926.ch2
  8. Oliver-Tomas B, Renz M, Corma A. High Quality Biowaxes from Fatty Acids and Fatty Esters: Catalyst and Reaction Mechanism for Accompanying Reactions. Ind Eng Chem Res. 2017;56(45):12870-7. doi.org/10.1021/acs.iecr.7b01794
  9. Soleimanian Y, Goli SAH, Shirvani A, Elmizadeh A, Marangoni AG. Wax‐based delivery systems: Preparation, characterization, and food applications. Comprehensive Reviews in Food Science and Food Safety. 2020;19(6):2994-3030. doi.org/10.1111/1541-4337.12614
  10. Wettlaufer T, Hetzer B, Flöter E. Characterization of Oleogels Based on Waxes and Their Hydrolyzates. Eur J Lipid Sci Technol. 2021;123(7):2000345. doi.org/10.1002/ejlt.202000345
  11. Zhang Z, Ye J, Fei T, Ma X, Xie X, Huang H, et al. Interesterification of rice bran wax and palm olein catalyzed by lipase: Crystallization behaviours and characterization. Food Chemistry. 2019;286:29-37. doi: 10.1016/j.foodchem.2019.01.192
  12. Caputo D, Casiello M, Laurenza AG, Fracassi F, Fusco C, Nacci A, et al. Preparation of Biowax Esters in Continuous Flow Conditions. ACS Omega. 2019;4(7):12286-92. doi: 10.1021/acsomega.9b00861
  13. Mosquera Montoya M, Valderrama Villabona M, Ruíz Álvarez E, López Alfonso D, Castro Zamudio LE, Fontanilla CA, et al. Costos de producción para el fruto de palma de aceite y el aceite de palma en 2015: estimación en un grupo de productores colombianos. Revista Palmas. 2017;38(2):10-26. https://publicaciones.fedepalma.org/index.php/palmas/article/view/12122
  14. Lugo Arias ER, Sáenz Zapata JA, Lugo Arias JL. La productividad como determinante de la competitividad de las exportaciones de aceite de palma del departamento del Magdalena Colombia, 2007-2015. Saber Cienc Lib. 2018;13(1):145-63. doi: 10.18041/2382-3240/saber.2018v13n1.2088
  15. Diarte C, Romero A, Romero MP, Graell J, Lara I. Chemical and Sensory Characterization of Nine Spanish Monovarietal Olive Oils: An Emphasis on Wax Esters. Agriculture. 2021;11(2):170. doi.org/10.3390/agriculture11020170
  16. Huynh A, Maktabi B, Reddy CM, O’Neil GW, Chandler M, Baki G. Evaluation of alkenones, a renewably sourced, plant‐derived wax as a structuring agent for lipsticks. Int J Cosmet Sci. 2020;42(2):146-55. doi: 10.1111/ics.12597
  17. Kanya T, Rao L, Sastry M. Characterization of wax esters, free fatty alcohols and free fatty acids of crude wax from sunflower seed oil refineries☆. Food Chemistry. 2007;101(4):1552-7. doi.org/10.1016/j.foodchem.2006.04.008
  18. Flöter E, Wettlaufer T, Conty V, Scharfe M. Oleogels—Their Applicability and Methods of Characterization. Molecules. 2021;26(6):1673. doi: 10.3390/molecules26061673
  19. Papadaki A, Kopsahelis N, Freire DMG, Mandala I, Koutinas AA. Olive Oil Oleogel Formulation Using Wax Esters Derived from Soybean Fatty Acid Distillate. Biomolecules. 2020;10(1):106. doi: 10.3390/biom10010106
  20. Bharathwaaj R, Nagarajan PK, Kabeel AE, Madhu B, Mageshbabu D, Sathyamurthy R. Formation, characterization and theoretical evaluation of combustion of biodiesel obtained from wax esters of A. Mellifera. Alexandria Engineering Journal. 2018;57(3):1205-15. doi.org/10.1016/j.aej.2017.03.021
  21. Yao L, Lio J, Wang T, Jarboe DH. Synthesis and Characterization of Acetylated and Stearylyzed Soy Wax. J Am Oil Chem Soc. 2013;90(7):1063-71. doi.org/10.1007/s11746-013-2239-7
  22. Nasri NS, Ahmed MM, Mohd Noor N, Mohammed J, Hamza UD, Mohd Zain H. Hydrophobicity Characterization of Bio-Wax Derived from Taro Leaf for Surface Coating Applications. AMR. 2014;1043:184-8. doi.org/10.4028/www.scientific.net/AMR.1043.184
  23. Wang P, Qian X, Shen J. Superhydrophobic Coatings with Edible Biowaxes for Reducing or Eliminating Liquid Residues of Foods and Drinks in Containers. BioRes. 2017;13(1):1-2. doi: 10.15376/biores.13.1.1-2
  24. Chuberre B, Araviiskaia E, Bieber T, Barbaud A. Mineral oils and waxes in cosmetics: an overview mainly based on the current European regulations and the safety profile of these compounds. J Eur Acad Dermatol Venereol. 2019;33(S7):5-14. doi: 10.1111/jdv.15946
  25. Merchán Sandoval J, Carelli A, Palla C, Baümler E. Preparation and characterization of oleogel emulsions: A comparative study between the use of recovered and commercial sunflower waxes as structuring agent. Journal of Food Science. 2020;85(9):2866-78. doi: 10.1111/1750-3841.15361
  26. Kaliyadan F, Kulkarni V. Types of Variables, Descriptive Statistics, and Sample Size. Indian Dermatology Online Journal. 2019;10(1):82-6. doi: 10.4103/idoj.IDOJ_468_18
  27. Mishra P, Pandey C, Singh U, Gupta A, Sahu C, Keshri A. Descriptive statistics and normality tests for statistical data. Ann Card Anaesth. 2019;22(1):67. doi: 10.4103/aca.ACA_157_18
  28. Li J, Liu J, Sun X, Liu Y. The mathematical prediction model for the oxidative stability of vegetable oils by the main fatty acids composition and thermogravimetric analysis. LWT. 2018;96:51-7. doi.org/10.1016/j.lwt.2018.05.003