Economic and environmental evaluation of biogas technologies utilization and perspectives of multi-criteria analysis
Published 2023-02-28
Keywords
- Anaerobic digestion,
- Life Cycle Assessment,
- Organic waste,
- Net present value
How to Cite
Copyright (c) 2023 Jean Agustín Velásquez-Piñas, Orly Denisse Calle-Roalcaba, Luis Ramiro Miramontes-Martínez, Leonardo Alexis Alonso Gómez
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
Anaerobic digestion (AD) technology is a process implemented to produce biogas and digestate by
managing organic waste. The biogas produced can be converted into electricity of renewable feedstock and the liquid fraction into biofertilizer. The proper commercialization of this electricity allows to reduce greenhouse gas emissions (GGE) by the substitution of electricity of fossil origin and the biofertilizer can reduce the use of nitrogen fertilizers based on urea. In Latin America, the AD presents operational challenges, which limit the commercialization of these products and compromise the sustainability of these projects on an industrial scale. This paper presents a critical analysis of the main methodologies used to quantify the economic and environmental profitability of AD, complemented by practical and theoretical experiences in Latin America. The economic tools analyzed were the net present value (NPV), the internal rate of return (IRR) and the payback period (PP), which through an analysis of operating and capital costs, and the possible income from the reduction of GGE, allow quantifying the financial viability of these projects. As an environmental performance criterion, the Life Cycle Assessment methodology was analyzed, which allows quantifying all the environmental loads avoided by AD. The information that this work brings together significantly helps to enrich the database on the treatment of organic waste and in the future, it will help decision-making regarding environmental problems.
Downloads
References
- Rundlöf M, Smith H G, Birkhofer K. Effects of Organic Farming on Biodiversity. eLS. 2016:1–7. doi.org/10.1002/9780470015902.A0026342
- Alonso‐Gómez LA, Avila-Parrado P, Rodriguez-Rojas MP, Espinosa-Solares T. Potencial bioquímico de metano de las cáscaras de cacao en codigestión con estiércol bovino. RedBioLAC. 2020;4:113-118.
- Matheri AN, Mbohwa C, Belaid M, Seodigeng T, Ngila JC. Design Model Selection and Dimensioning of Anaerobic Digester for the OFMSW. In: Proceedings of the World Congress on Engineering and Computer Science Vol. 2; 2016 oct 19-21; San Francisco, USA. Lect. Notes Eng. Comput. Sci; 2016.
- Seadi TAl, Rutz D, Prassl H, Köttner M, Finsterwalder T, Volk S, et al. Biogas Handbook. University of Southern Denmark Esbjerg Niels, Bohrs Vej 9-10, DK-6700; 2008.
- Kulkarni I, Zang JW, Leandro WM, Parikh P, Adler I, Da Fonseca-Zang WA, et al. Closed-Loop Biodigesters on Small-Scale Farms in Low- and Middle-Income Countries: A Review. Water. 2021;13(19):2744. doi.org/10.3390/W13192744
- Samanez CP. Engenharia Econômica. São Paulo, Brasil: Pearson Prentice Hall; 2009.
- Gomes HP. Avaliação Econômica: Eficiência Energética. Brasil: Universidade Federal da Paraíba (UFPB); 2014.
- Albrecht FG, König DH, Baucks N, Dietrich RU. A Standardized Methodology for the Techno-Economic Evaluation of Alternative Fuels – A Case Study. Fuel. 2017;194:511–526. doi.org/10.1016/J.FUEL.2016.12.003
- Alonso-Gómez LA, Solarte-Toro JC, Bello-Pérez, LA, Cardona-Alzate CA. Performance Evaluation and Economic Analysis of the Bioethanol and Flour Production Using Rejected Unripe Plantain Fruits (Musa Paradisiaca L.) as Raw Material. Food Bioprod. Process. 2020;121:29–42. doi.org/10.1016/j.fbp.2020.01.005
- Joint Research Centre, Institute for Energy and Transport. Weidner E, Jakubcionis M, Vallei M, Sigfusson B, Jäger-Waldau A, Lacal Arántegui R, et al. Energy Technology Reference Indicator (ETRI) projections for 2010-2050. Luxemburgo: Publications Office of the European Union; 2014. doi.org/10.2790/057687
- Karellas S, Boukis I, Kontopoulos G. Development of an Investment Decision Tool for Biogas Production from Agricultural Waste. Renew. Sustain. Energy Rev. 2010;14(4):1273–1282. doi.org/10.1016/j.rser.2009.12.002
- Solarte-Toro JC, Rueda-Duran CA, Ortiz-Sanchez M, Cardona Alzate CA. A Comprehensive Review on the Economic Assessment of Biorefineries: The First Step towards Sustainable Biomass Conversion. Bioresour. Technol. Reports. 2021;15:100776. doi.org/10.1016/J.BITEB.2021.100776
- Garcia-Nunez JA, Rodriguez DT, Fontanilla CA, Ramirez NE, Silva Lora EE, Frear CS, et al. Evaluation of Alternatives for the Evolution of Palm Oil Mills into Biorefineries. Biomass and Bioenergy. 2016:95;310–329. doi.org/10.1016/J.BIOMBIOE.2016.05.020
- Alzate S, Restrepo-Cuestas B, Jaramillo-Duque Á. Municipal Solid Waste as a Source of Electric Power Generation in Colombia: A Techno-Economic Evaluation under Different Scenarios. Resources. 2019;8(1):51. doi.org/10.3390/resources8010051
- UNFCCC. ACUERDO DE PARÍS. Paris, Francia: Naciones Unidas; 2015.
- Intergovernmental Panel on Climate Change - IPCC. Climate Change 2007: The Physical Science Basis. The Working Group I Contribution to the IPCC Fourth Assessment Report - AR4, 1st ed.; IPCC. 996p., 2007.
- Intergovernmental Panel on Climate Change - IPCC. Climate Change 2007: The Physical Science Basis. The Working Group I Contribution to the IPCC Fourth Assessment Report - AR4, Errata.; IPCC. pp.1-6, 2012.
- Valencia GE, Obregón LG, Cardenas YE. Multi-Objective Analysis of a CHP System Using Natural Gas and Biogas on the Prime Mover. Chem. Eng. Trans. 2018;65:313–318. doi.org/10.3303/CET1865053
- Agência Nacional de Energia Elétrica – ANEEL. Resolução Normativa No 687, de 24 de Novembro de 2015. Altera a Resolução Normativa no 482, de 17 de abril de 2012, e os Módulos 1 e 3 dos Procedimentos de Distribuição – PRODIST. Brasilia-DF: ANEEL; 2015.
- Agência Nacional de Energia Elétrica – ANEEL. Resolução Normativa No 482/2012. Brasil; 2012.
- Nielsen HB, Angelidaki I. Congestion of Manure and Industrial Organic Waste at Centralized Biogas Plants: Process Imbalances and Limitations. Water Sci. Technol. 2008;58(7):1521–1528. doi.org/10.2166/wst.2008.507
- Polifacio M, Murphy JD. Anaerobic Digestion in Ireland: Decision Support System. Dep. Civil, Struct. Environ. Eng. Cork Inst. Technol. Irel. 2007.
- Weiland P. Production and Energetic Use of Biogas from Energy Crops and Wastes in Germany. Appl. Biochem. Biotechnol. - Part A Enzym. Eng. Biotechnol. 2003;109(1–3):263–274. doi.org/10.1385/ABAB:109:1-3:263
- Pieper DH, Vilchez-Vargas R, Jáuregui R, Boon N, Roume H, Raport L, et al. The Full-Scale Anaerobic Digestion Microbiome Is Represented by Specific Marker Populations. Water Res. 2016;104:101–110. doi.org/10.1016/j.watres.2016.08.008
- Otuzalti MM, Perendeci NA. Modeling of Real Scale Waste Activated Sludge Anaerobic Digestion Process by Anaerobic Digestion Model 1 (ADM1). Int. J. Green Energy. 2018;15(7):454–464. doi.org/10.1080/15435075.2018.1479265
- Wang M, Chen S, Han Y, Chen L, Wang D. Responses of Soil Aggregates and Bacterial Communities to Soil-Pb Immobilization Induced by Biofertilizer. Chemosphere. 2019;220:828–836. doi.org/10.1016/J.CHEMOSPHERE.2018.12.214
- Cecchi F, Cavinato C. Smart Approaches to Food Waste Final Disposal. Int. J. Environ. Res. Public Health. 2019;16(16):2860. doi.org/10.3390/ijerph16162860
- Michailos S, Walker M, Moody A, Poggio D, Pourkashanian M. Biomethane Production Using an Integrated Anaerobic Digestion, Gasification and CO2 Biomethanation Process in a Real Waste Water Treatment Plant: A Techno-Economic Assessment. Energy Convers. Manag. 2020;209:112663. doi.org/10.1016/j.enconman.2020.112663
- Chao R, Sosa R, Pérez AA, Cruz E. A Study on Pig Wastewater Treatment with Low Cost Biodigesters. Livest. Res. Rural Dev. 2008;20:149.
- Lansing S, Víquez J, Martínez H, Botero R, Martin J. Quantifying Electricity Generation and Waste Transformations in a Low-Cost, Plug-Flow Anaerobic Digestion System. Ecol. Eng. 2008;34(4):332–348. doi.org/10.1016/j.ecoleng.2008.09.002
- Garfí M, Ferrer-Martí L, Perez I, Flotats X, Ferrer I. Codigestion of Cow and Guinea Pig Manure in Low-Cost Tubular Digesters at High Altitude. Ecol. Eng. 2011;37(12):2066–2070. doi.org/10.1016/j.ecoleng.2011.08.018
- Martí-Herrero J, Ceron M, Garcia R, Pracejus L, Alvarez R, Cipriano X. The Influence of Users’ Behavior on Biogas Production from Low Cost Tubular Digesters: A Technical and Socio-Cultural Field Analysis. Energy Sustain. Dev. 2015;27:73–83. doi.org/10.1016/j.esd.2015.05.003
- Ferrer I, Gamiz M, Almeida M, Ruiz A. Pilot Project of Biogas Production from Pig Manure and Urine Mixture at Ambient Temperature in Ventanilla (Lima, Peru). Waste Manag. 2009;29(1):168–173. doi.org/10.1016/j.wasman.2008.02.014
- Martí-Herrero J, Alvarez R, Cespedes R, Rojas MR, Conde V, Aliaga L, et al. Cow, Sheep and Llama Manure at Psychrophilic Anaerobic Co-Digestion with Low Cost Tubular Digesters in Cold Climate and High Altitude. Bioresour. Technol. 2015;181:238–246. doi.org/10.1016/j.biortech.2015.01.063
- Li L, Peng X, Wang X, Wu D. Anaerobic Digestion of Food Waste: A Review Focusing on Process Stability. Bioresour. Technol. 2018;248(174):20–28. doi.org/10.1016/j.biortech.2017.07.012
- Carballa M, Regueiro L, Lema JM. Microbial Management of Anaerobic Digestion: Exploiting the Microbiome-Functionality Nexus. Curr. Opin. Biotechnol. 2015;33:103–111. doi.org/10.1016/j.copbio.2015.01.008
- Wu D, Li L, Zhao X, Peng Y, Yang P, Peng X. Anaerobic Digestion: A Review on Process Monitoring. Renew. Sustain. Energy Rev. 2019;103:1–12. doi.org/10.1016/j.rser.2018.12.039
- Galván-Arzola U, Miramontes-Martínez LR, Escamilla-Alvarado C, Botello-Álvarez JE, Alcalá-Rodríguez MM, Valencia-Vázquez R, et al. Anaerobic Digestion of Agro-Industrial Waste: Anaerobic Lagoons in Latin America. Rev. Mex. Ing. Química. 2022;21(2):2680. doi.org/10.24275/rmiq/IA2680
- Gutierrez EC, Xia A, Murphy JD. Can Slurry Biogas Systems Be Cost Effective without Subsidy in Mexico? Renew. Energy. 2016;95:22–30. doi.org/10.1016/j.renene.2016.03.096
- SENER. Reporte de Ingeniería Tecnológica: Biocombustibles Gaseosos. México: Instituto Mexicano del Petroleo; 2018.
- Falconer RE, Haltas I, Varga L, Forbes PJ, Abdel-Aal M, Panayotov N. Anaerobic Digestion of Food Waste: Eliciting Sustainable Water-Energy-Food Nexus Practices with Agent Based Modelling and Visual Analytics. J. Clean. Prod. 2020;255:120060. doi.org/10.1016/j.jclepro.2020.120060
- Pérez-Camacho MN, Curry R, Cromie T. Life Cycle Environmental Impacts of Substituting Food Wastes for Traditional Anaerobic Digestion Feedstocks. Waste Manag. 2018;73:140–155. doi.org/10.1016/j.wasman.2017.12.023
- Moncada B. J, Aristizábal M. V, Cardona A. CA. Design Strategies for Sustainable Biorefineries. Biochem. Eng. J. 2016;116:122–134. doi.org/10.1016/J.BEJ.2016.06.009
- Reza B, Sadiq R, Hewage K. Sustainability Assessment of Flooring Systems in the City of Tehran: An AHP-Based Life Cycle Analysis. Constr. Build. Mater. 2011;25(4):2053–2066. doi.org/10.1016/j.conbuildmat.2010.11.041
- Jin Y, Chen T, Chen X, Yu Z. Life-Cycle Assessment of Energy Consumption and Environmental Impact of an Integrated Food Waste-Based Biogas Plant. Appl. Energy. 2015;151:227–236. doi.org/10.1016/J.APENERGY.2015.04.058
- GreenDelta. OopenLCA. Disponible en: https://www.openlca.org/software/ Acceso el 30 de julio 2021.
- Aziz NIHA, Hanafiah MM. Life Cycle Analysis of Biogas Production from Anaerobic Digestion of Palm Oil Mill Effluent. Renew. Energy. 2020;145:847–857. doi.org/10.1016/J.RENENE.2019.06.084
- Bartocci P, Zampilli M, Liberti F, Pistolesi V, Massoli S, Bidini G, et al. LCA Analysis of Food Waste Co-Digestion. Sci. Total Environ. 2020;709:136187. doi.org/10.1016/J.SCITOTENV.2019.136187
- Barrera EL, Rosa E, Spanjers H, Romero O, De Meester S, Dewulf, J. A Comparative Assessment of Anaerobic Digestion Power Plants as Alternative to Lagoons for Vinasse Treatment: Life Cycle Assessment and Exergy Analysis. J. Clean. Prod. 2016:113:459–471. doi.org/10.1016/J.JCLEPRO.2015.11.095
- Munasinghe M, Jayasinghe P, Deraniyagala Y, Matlaba VJ, Santos JFD, Maneschy MC, et al. Value–Supply Chain Analysis (VSCA) of Crude Palm Oil Production in Brazil, Focusing on Economic, Environmental and Social Sustainability. Sustain. Prod. Consum. 2019;17:161–175. doi.org/10.1016/j.spc.2018.10.001
- Cadena E, Rocca F, Gutierrez JA, Carvalho A. Social Life Cycle Assessment Methodology for Evaluating Production Process Design: Biorefinery Case Study. J. Clean. Prod. 2019;238:117718. doi.org/10.1016/J.JCLEPRO.2019.117718
- Cardona-Alzate CA, Moncada B. J, Aristizábal-Marulanda V. Social Analysis of Biorrefineries. In: BIOREFINERIES: design and analysis. Boca Raton, United States: CRC PRESS; 2018. doi.org/10.1201/9781315114088
- Ciroth A, Eisfeldt F. PSILCA-A Product Social Impact Life Cycle Assessment Database. Database Version 1.0. Green Delta; 2016.
- Velásquez Piñas JA, Venturini OJ, Silva Lora EE, del Olmo OA, Calle Roalcaba OD. An Economic Holistic Feasibility Assessment of Centralized and Decentralized Biogas Plants with Mono-Digestion and Co-Digestion Systems. Renew. Energy. 2019;139:40–51. doi.org/10.1016/j.renene.2019.02.053
- De Oliveira LGS, Negro SO. Contextual Structures and Interaction Dynamics in the Brazilian Biogas Innovation System. Renew. Sustain. Energy Rev. 2019;107:462–481. doi.org/10.1016/j.rser.2019.02.030
- Cerqueira PLW, Aisse MM. Custos de Processamento de Lodo Em Estações de Tratamento de Esgoto Com Reatores Anaeróbios de Manto de Lodo e Pós-Tratamento Aeróbio: Subsídios Para Estudos de Concepção. Eng. Sanit. e Ambient. 2021;26(2):251–262. doi.org/10.1590/S1413-415220190244
- Schelly C, Bessette D, Brosemer K, Gagnon V, Arola KL, Fiss A, et al. Energy Policy for Energy Sovereignty: Can Policy Tools Enhance Energy Sovereignty? Sol. Energy. 2020;205:109–112. doi.org/10.1016/j.solener.2020.05.056
- Brosemer K, Schelly C, Gagnon V, Arola KL, Pearce JM, Bessette D, et al. The Energy Crises Revealed by COVID : Intersections of Indigeneity, Inequity, and Health. Energy Res. Soc. Sci. 2020;68:101661. doi.org/10.1016/j.erss.2020.101661
- Nwokoagbara E, Olaleye AK, Wang M. Biodiesel from Microalgae: The Use of Multi-Criteria Decision Analysis for Strain Selection. Fuel. 2015;159:241–249. doi.org/10.1016/j.fuel.2015.06.074
- Rao B, Mane A, Rao AB, Sardeshpande V. Multi-Criteria Analysis of Alternative Biogas Technologies. Energy Procedia. 2014;54:292–301. doi.org/10.1016/j.egypro.2014.07.272
- Pohekar SD, Ramachandran M. Application of Multi-Criteria Decision Making to Sustainable Energy Planning - A Review. Renew. Sustain. Energy Rev. 2004;8(4):365–381. doi.org/10.1016/j.rser.2003.12.007
- Feiz R, Ammenberg J. Assessment of Feedstocks for Biogas Production, Part I—A Multi-Criteria Approach. Resour. Conserv. Recycl. 2017;122:373–387. doi.org/10.1016/j.resconrec.2017.01.019
- Madlener R, Henggeler C, Dias LC. Assessing the Performance of Biogas Plants with Multi-Criteria and Data Envelopment Analysis. Eur. J. Oper. Res. 2009;197(3):1084–1094. doi.org/10.1016/j.ejor.2007.12.051
- Nzila C, Dewulf J, Spanjers H, Tuigong D, Kiriamiti H, Van Langenhove H. Multi Criteria Sustainability Assessment of Biogas Production in Kenya. Appl. Energy. 2012;93:496–506. doi.org/10.1016/j.apenergy.2011.12.020