Vol. 35 No. 2 (2022): Revista ION
Articles

Simulation of a WtE (Waste to Energy) plant for the recovery of energy from municipal solid waste in the Valle de Aburra

Julián Andrés Cardona Giraldo
Departamento de ingeniería química, Facultad de ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia

Published 2022-12-05

Keywords

  • Energy use,
  • Aspen Plus,
  • Mains combustion,
  • Waste incineration,
  • Municipal solid waste,
  • Process simulation
  • ...More
    Less

How to Cite

Barrera, R., & Cardona Giraldo, J. A. (2022). Simulation of a WtE (Waste to Energy) plant for the recovery of energy from municipal solid waste in the Valle de Aburra. Revista ION, 35(2), 71–81. https://doi.org/10.18273/revion.v35n2-2022006

Abstract

A model to simulate a combustion plant for the energy recovery of urban solid waste under the WtE (Waste to Energy) concept using the Aspen Plus software is presented. The model was validated by comparing data from the simulated process and data available in the literature. It was found that regardless of the simulated operating conditions, the model results agree with reported data in terms of thermal power, electrical power, mechanical efficiency, and composition (kg/h) of the plant outlet gases, showing deviations ≤ 12% with respect to WtE plants operating under simulated conditions. This allows us to conclude that the model is suitable for estimating mass and energy flows, as well as the electrical power generated in the WtE process, and that it is useful as an analysis tool for preliminary studies in such kind of plants. The model, once validated, was used to evaluate different municipal solid waste management scenarios in the Valle de Aburrá, allowing the estimation of important energy data for the evaluation or comparison of strategies related to waste management in urban areas and under different operation conditions.

Downloads

Download data is not yet available.

References

  1. ONU, Programa para el medio ambiente. Perspectiva de la Gestión de Residuos en América latina y el Caribe (Internet). Ciudad de Panamá, Panamá; 2018. Disponible en: https://www.unep.org/es/resources/informe/perspectiva-de-la-gestion-de-residuos-en-america-latina-y-el-caribe. Acceso en agosto de 2022.
  2. Superintendencia de Servicios Públicos Domiciliarios. Disposición final de residuos sólidos. Informe Nacional 2015. Bogotá, Colombia; 2016. Disponible en: https://www.superservicios.gov.co/sites/default/files/inline-files/informedisposicionfinalano2015-sspd1%20%281%29.pdf Acceso en agosto de 2022.
  3. Área Metropolitana Valle de Aburrá. Plan de Gestión Integral de Residuos Sólidos (PGIR). Lineamiento estratégico de la gestión regional de residuos sólidos. Disponible en: https://www.metropol.gov.co/ambiental/residuos-solidos/Paginas/plan-de-gestion-integral.aspx?RootFolder=/ambiental/residuos-solidos/plangestionintegral/03_Objetivos_Metas&FolderCTID=0x0120000D70FBE3DFD4C044AD98D679EF2024E3&View=%7BBF93FD0C-0B6B-44E4-BBD3-29B3B8A73493%7D. Acceso en agosto de 2022.
  4. Cardona J, Estudio de Prefactibilidad de una Planta Térmica Waste To Energy (WtE) para el Aprovechamiento de Residuos Sólidos Municipales en el Valle de Aburra (tesis de Maestría). Medellín, Colombia: Universidad de Antioquia; 2022.
  5. Empresas Varias de Medellín. EMVARIAS, Grupo EPM. Programa para la Prestación del Servicio Público de Aseo. Disponible en: https://www.emvarias.com.co/LinkClick.aspx?fileticket=Hqo34yCWND0%3D&portalid=1. Acceso en agosto de 2022.
  6. World Energy Council. World Energy Resources 2016. Disponible en: https://www.worldenergy.org/assets/images/imported/2016/10/World-Energy-Resources-Full-report-2016.10.03.pdf. Acceso en agosto de 2022.
  7. Themelis N, Diaz M, Estevez P, Gaviota A. Guia para la Recuperación de Energía y Materiales de Residuos Columbia University; 2013. Disponible en: https://docplayer.es/52233299-Guia-para-la-recuperacion-de-energia-y-materiales-de-residuos.html. Acceso en agosto de 2022..
  8. Departamento Nacional de Planeación. Documento CONPES 3874. Política Nacional Para La Gestión De Residuos Sólidos. Colombia: Consejo Nacional de Política Económica y Social; 2016. Disponible en: https://colaboracion.dnp.gov.co/CDT/Conpes/Económicos/3874.pdf. Acceso en agosto de 2022.
  9. Deltaway Energy. Waste-to-Energy: How It Works; 2017. Disponible en: https://deltawayenergy.com/2018/08/waste-to-energy-how-it-works/. Acceso en agosto de 2022.
  10. Cimini S, Prisciandaro M, Barba, D. Simulation of a waste incineration process with flue-gas cleaning and heat recovery sections using Aspen Plus. Waste Manage. 2005; 25(2):171–175. doi.org/10.1016/j.wasman.2004.12.005
  11. Ding G, He B, Cao Y, Wang C, Su L, Duan Z, et al. Process simulation and optimization of municipal solid waste fired power plant with oxygen/carbon dioxide combustion for near zero carbon dioxide emission. Energy Convers. Manag. 2018; 157: 157–168. doi.org/10.1016/j.enconman.2017.11.087
  12. Jannelli E, Minutillo M. Simulation of the flue gas cleaning system of an RDF incineration power plant. Waste Manage. 2007;27(5) 684–690. doi.org/10.1016/j.wasman.2006.03.017
  13. Grieco E, Poggio A. Simulation of the influence of flue gas cleaning system on the energetic efficiency of a waste-to-energy plant. Appl Energy. 2009;86(9)1517–1523. doi.org/10.1016/j.apenergy.2008.12.035
  14. Urbancl D, Zlak J, Anicic B, Trop P, Goricanec D. The evaluation of heat production using municipal biomass co-incineration within a thermal power plant. Energy 2016;108:140–147. doi.org/10.1016/j.energy.2015.07.064
  15. Jana K, De S. Biomass integrated combined power plant with post combustion CO2 capture - Performance study by aspen plus. Energy Procedia. 2014;54:166–176. doi.org/10.1016/j.egypro.2014.07.260
  16. Stehlik P, Puchyr R, Oral J. Simulation of processes for thermal treatment of wastes. Waste Manage. 2000;20(5–6):435–442. doi.org/10.1016/S0956-053X(00)00008-8
  17. Su X, Zhang L, Xiao Y, Sun M, Gao X, Su J. Evaluation of a flue gas cleaning system of a circulating fluidized bed incineration power plant by the analysis of pollutant emissions. Powder Tech. 2015; 286: 9–15. doi.org/10.1016/j.powtec.2015.07.038
  18. Barrera R, Salazar C, Pérez J. Thermochemical Equilibrium Model of Synthetic Natural Gas Production from Coal Gasification Using Aspen Plus. IJCE. 2014:192057. doi.org/10.1155/2014/192057
  19. Departamento Administrativo de la Función Pública. Decreto 0838 de 2005. Colombia; 2005. Disponible en: https://www.funcionpublica.gov.co/eva/gestornormativo/norma_pdf.php?i=16123. Acceso en agosto de 2022.