Catalytic and Autothermal Gasification of Biomass Waste at Bench Scale: Construction and Optimization.
Published 2022-12-05
Keywords
- Gasification,
- Catalysis,
- Tar,
- Biomass,
- Syngas
How to Cite
Copyright (c) 2022 Lina Garcia Peña, Misael Cordoba Arroyo, Liza Dosso, Carlos Roman Vera, Juan Carlos Casas Zapata, Alfonso Enrique Ramírez Sanabria, Mariana Busto, Juan Badano
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
In this work, a bench scale gasification system for biomass waste (pine sawdust) was built. It composed of hopper and screw feeding system, fluidized bed autothermal reactor and gas conditioning system (cyclone and gas cooling). Low-cost catalysts were evaluated in the reactor: a natural mineral (dolomite) and a solid pyrolysis residue, compared to an inert (sand). Catalysts and biomass waste were characterized by different techniques: ICP, BET, TGA, CHONS, among others. Optimization process was studied different condition: biomass particle size, feed rate, gasifying agents and temperature profiles. Optimal performance was achieved with particle size range between 0.50-0.85 mm, feed rate of 0.84 kg/h and equivalent ratio gasifying gas (air and/or steam) to biomass of 0.35-0.45 with equilibrium temperatures of 650 and 750°C, respectively. As expected, higher tar reduction and better values of H2:CO and LHV was obtained with the use of catalysts, reaching tar reduction between 10-45%. Experimental results show that our bench scale autothermic gasification system add value to biomass waste with low-cost catalysts, making it environmentally and economically attractive.
Downloads
References
- Akbarian A, Andooz A, Kowsari E, Ramakrishna S, Asgari S, Cheshme ZA. Challenges and opportunities of lignocellulosic biomass gasification in the path of circular bioeconomy. Bioresource Technology. 2022;362:127774. doi.org/10.1016/j.biortech.2022.127774
- Nanda S, Mohanty, P, Pant KK, Naik S, Kozinski JA, Dalai AK. Characterization of North American Lignocellulosic Biomass and Biochars in Terms of their Candidacy for Alternate Renewable Fuels. BioEnergy Research. 2013;6(2):663-677. doi.org/10.1007/s12155-012-9281-4
- Basu P. Hydrothermal Gasification of Biomass. in Biomass Gasification and Pyrolysis. Boston: Academic Press; 2010. p. 229-267. doi.org/10.1016/C2009-0-20099-7
- Mai TP, Nguyen DQ. Gasification of Biomass. Biotechnological Applications of Biomass; 2021.
- Anis S, Zainal ZA. Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: A review. Renewable and Sustainable Energy Reviews. 2011;15(5):2355-2377. doi.org/10.1016/j.rser.2011.02.018
- Mashiur Rahman M. Test and performance optimization of nozzle inclination angle and swirl combustor in a low-tar biomass gasifier: a biomass power generation system perspective. Carbon Resources Conversion. 2022;5(2):139-49. doi.org/10.1016/j.crcon.2022.01.002
- Mahinpey N, Gomez A. Review of gasification fundamentals and new findings: Reactors, feedstock, and kinetic studies. Chemical Engineering Science. 2016;148(12):14-31. doi.org/10.1016/j.ces.2016.03.037
- Molino AS. Chianese, and D. Musmarra, Biomass gasification technology: The state of the art overview. Journal of Energy Chemistry. 2016;25(1):10-25. doi.org/10.1016/j.jechem.2015.11.005
- McKendry P. Energy production from biomass (part 3): gasification technologies. Bioresource Technology. 2002;83(1):55-63. doi.org/10.1016/S0960-8524(01)00120-1
- Warnecke R. Gasification of biomass: comparison of fixed bed and fluidized bed gasifier. Biomass and Bioenergy. 2000;18(6):489-497. doi.org/10.1016/S0961-9534(00)00009-X
- Hofbauer H, Materazzi M. 7 - Waste gasification processes for SNG production, in Substitute Natural Gas from Waste, M. Materazzi and P.U. Foscolo, Editors. 2019, Academic Press; 2019. p. 105-160.
- Zhang Z, Liu L, Shen B, Wu C. Preparation, modification and development of Ni-based catalysts for catalytic reforming of tar produced from biomass gasification. Renewable and Sustainable Energy Reviews. 2018;94:1086-1109. doi.org/10.1016/j.rser.2018.07.010
- Cortazar M, Santamaria L, Lopez G, Alvarez J, Amutio M, Bilbao J, et al. Fe/ olivine as primary catalyst in the biomass steam gasification in a fountain confined spouted bed reactor. Journal of Industrial and Engineering Chemistry, 2021;99:364-379. doi.org/10.1016/j.jiec.2021.04.046
- Rapagnà S, Virginie M, Gallucci K, Courson C, Di Marcello M, Kiennemann A, et al. Fe/olivine catalyst for biomass steam gasification: Preparation, characterization and testing at real process conditions. Catalysis Today. 2011;176(1):163-168. doi.org/10.1016/j.cattod.2010.11.098
- Lin Q, Zhang S, Wang J, Yin H. Synthesis of modified charsupported Ni– Fe catalyst with hierarchical structure for catalytic cracking of biomass tar. Renewable Energy. 2021;174:188-198. doi.org/10.1016/j.renene.2021.04.084
- Galadima A, Masudi A, Muraza O. Catalyst development for tar reduction in biomass gasification: Recent progress and the way forward. Journal of Environmental Management. 2022;305:114274. doi.org/10.1016/j.jenvman.2021.114274
- Asadullah M, Ito S, Kunimori K, Yamada M, Tomishige K. Biomass Gasification to Hydrogen and Syngas at Low Temperature: Novel Catalytic System Using Fluidized-Bed Reactor. Journal of Catalysis. 2002;208(2):255-259. doi.org/10.1006/jcat.2002.3575
- Sutton D, Kelleher B, Ross JRH. Review of literature on catalysts for biomass gasification. Fuel Processing Technology. 2001;73(3):155-173. doi.org/10.1016/S0378-3820(01)00208-9
- Virginie M, Courson C, Niznansky D, Chaoui N, Kiennemann A. Characterization and reactivity in toluene reforming of a Fe/olivine catalyst designed for gas cleanup in biomass gasification. Applied Catalysis B: Environmental. 2010;101(1-2):90-100. doi.org/10.1016/j.apcatb.2010.09.011
- Zhang S, Chen Z, Zhang H, Wang Y, Xu X, Cheng L, et al. The catalytic reforming of tar from pyrolysis and gasification of brown coal: Effects of parental carbon materials on the performance of char catalysts. Fuel Processing Technology. 2018;174:142-148. doi.org/10.1016/j.fuproc.2018.02.022
- Hu M, Laghari M, Cui B, Xiao B, Zhang B, Guo D. Catalytic cracking of biomass tar over char supported nickel catalyst. Energy. 2018;145:228-237. doi.org/10.1016/j.energy.2017.12.096
- Chao L, Zhang C, Zhang L, Gholizadeh M, Hu X. Catalytic pyrolysis of tire waste: Impacts of biochar catalyst on product evolution. Waste Management. 2020;116:9-21. doi.org/10.1016/j.wasman.2020.07.045
- Lv P, Yuan Z, Wu C, Ma L, Chen Y, Tsubaki N. Bio-syngas production from biomass catalytic gasification. Energy Conversion and Management. 2007;48(4):1132-1139. doi.org/10.1016/j.enconman.2006.10.014
- Jayathilake R, Rudra S. Numerical and Experimental Investigation of Equivalence Ratio (ER) and Feedstock Particle Size on Birchwood Gasification. Energies. 2017;10(8):1232. doi.org/10.3390/en10081232
- James Rivas A, Yuan W, Boyette MD, Wang D. The Effect of Air Flow Rate and Biomass Type on the Performance of an Updraft Biomass Gasifier. BioResources, 2015;10(2):3615-3624. doi: 10.15376/biores.10.2.3615-3624
- Cerone N, Zimbardi F. Gasification of Agroresidues for Syngas Production. Energies. 2018;11(5):1280. doi.org/10.3390/en11051280
- Syred C, Fick W, Griffiths AJ, Syred N. Cyclone gasifier and cyclone combustor for the use of biomass derived gas in the operation of a small gas turbine in cogeneration plants. Fuel. 2004;83(17):2381-2392. doi.org/10.1016/j.fuel.2004.01.013
- Bhandari B. Handbook of Industrial Drying, Fourth Edition Edited by A. S. Mujumdar. Drying Technology. 2015;33(1):128-129.
- Garcia L, Cordoba M, Dosso L, Vera C, Busto M, Bandano J. Catalytic Steam Reforming of Biomass Tar Model Compounds with Low Cost Catalysts: Effect of Operation Conditions. Topics in Catalysis. 2022;65:1382-1393. doi.org/10.1007/s11244-022-01659-6
- Van de Kamp W, de Wild PJ, Knoef HAM, Neeft JPA, Kiel JHA. Tar measurement in biomass gasification, standardisation and supporting R&D. Research Centre of the Netherlands, report ECN-C—06-046, 2006.
- Brage C, Yu Q, Chen G, Sjöström K. Use of amino phase adsorbent for biomass tar sampling and separation. Fuel. 1997;76(2):137-142. doi.org/10.1016/S0016-2361(96)00199-8
- Israelsson M, Seemann M, Thunman H. Assessment of the solid-phase adsorption method for sampling biomass-derived tar in industrial environments. Energy & Fuels. 2013;27(12):7569-7578. doi.org/10.1021/ef401893j
- Babrauskas V. Ignition of Wood: A Review of the State of the Art. Journal of Fire Protection Engineering. 2002;12(3):163-189. doi.org/10.1177/10423910260620482
- Guan G, Kaewpanha M, Hao Xiaogang, Abudula A. Catalytic steam reforming of biomass tar: Prospects and challenges. Renewable and Sustainable Energy Reviews. 2016;58:450-461. doi.org/10.1016/j.rser.2015.12.316
- Ram M, Mondal MK. Chapter 13 - Biomass gasification: a step toward cleaner fuel and chemicals, in Biofuels and Bioenergy. Gurunathan B, Sahadevan R, Zakaria ZA, Editors: Elsevier; 2022. p. 253-276. doi.org/10.1016/B978-0-323-85269-2.00008-3
- Liu Z, Zhang F, Liu H, Ba F, Yan S, Hu J. Pyrolysis/gasification of pine sawdust biomass briquettes under carbon dioxide atmosphere: Study on carbon dioxide reduction (utilization) and biochar briquettes physicochemical properties. Bioresource Technology. 2018;249:983-991. doi.org/10.1016/j.biortech.2017.11.012
- Huang F, Jin S. Investigation of biomass (pine wood) gasification: Experiments and Aspen Plus simulation. Energy Science & Engineering. 2019;7(4):1178-1187. doi.org/10.1002/ese3.338
- Samprón I, de Diego LF, García-Labiano F, Izquier MT, Abad A, Adánez J. Biomass Chemical Looping Gasification of pine wood using a synthetic Fe2O3/Al2O3 oxygen carrier in a continuous unit. Bioresource Technology. 2020;316:123908. doi.org/10.1016/j.biortech.2020.123908
- Mehrotra R, Singh P, Kandpal H. Near infrared spectroscopic investigation of the thermal degradation of wood. Thermochimica Acta. 2010;507-508:60-65. doi.org/10.1016/j.tca.2010.05.001
- Wu Y, Yao C, Hu Y, Zhu X, Qing Y, Wu Q. Comparative Performance of Three Magnesium Compounds on Thermal Degradation Behavior of Red Gum Wood. Materials. 2014;7(2):637-652. doi: 10.3390/ma7020637
- Liu Y, Zhao X, Li J, Ma D. Characterization of bio-char from pyrolysis of wheat straw and its evaluation on methylene blue adsorption. Desalination and Water Treatment. 2012;46(1-3):115-123. doi.org/10.1080/19443994.2012.677408
- Zhong X, Xie W, Wang N, Duan Y, Shang R, Huang L. Dolomite-Derived Ni-Based Catalysts with Fe Modification for Hydrogen Production via Auto-Thermal Reforming of Acetic Acid. Catalysts. 2016;6(6):85. doi.org/10.3390/catal6060085