Vol. 36 No. 1 (2023): Revista ION
Articles

Synthesis of micro and nanoparticles from pickling effluents from the hot-dip galvanizing industry

Alejandro Ramírez Marín
Universidad Nacional de Colombia - Sede Medellín
María José Vásquez Canabal
Universidad Nacional de Colombia - Sede Medellín
Luz Marina OCAMPO CARMONA
Universidad Nacional de Colombia

Published 2023-02-28

Keywords

  • hot dip galvanizing, pickling, nanoparticles, chemical synthesis, iron, zinc.

How to Cite

Ramírez Marín, A., Torres de la Ossa, J. D., Torres Perdomo, M. F., Vásquez Canabal, M. J., & OCAMPO CARMONA, L. M. (2023). Synthesis of micro and nanoparticles from pickling effluents from the hot-dip galvanizing industry. Revista ION, 36(1), 49–58. https://doi.org/10.18273/revion.v36n1-2023004

Abstract

The hot-dip galvanizing process is one of the most widely used techniques for protecting steel against corrosion and consists of immersing the steel in a bath of molten zinc. This process consists of several stages and each of them produces solid waste or effluents with metallic content, which must be treated before being disposed of in landfills and public sewers. These residues are around 1,000,000 t/year worldwide. The safe disposal of these is of great importance for the protection of the environment. The most critical stage of this process is pickling, which generates effluents that are very complex to treat due to their acidic character and metallic content, but they are of interest for obtaining value-added materials. In this article, micro and nanoparticles of iron and zinc are obtained from pickling effluents from the hotdip galvanizing industry, using four different routes of chemical synthesis (co-precipitation and sol-gel), obtaining particles with different sizes, morphologies and crystal structures.

Downloads

Download data is not yet available.

References

  1. Culcasi A, Gueccia R, Randazzo S, Cipollina A, Micale G. Design of a novel membrane-integrated waste acid recovery process from pickling solution. J. Clean. Prod. 2019;236:117623. doi.org/10.1016/j.jclepro.2019.117623
  2. Magalhães JM, Silva JE, Castro FP, Labrincha JA. Physical and chemical characterisation of metal finishing industrial wastes. J. Environ. Manage. 2005;75(2):157–166. doi.org/10.1016/j.jenvman.2004.09.011
  3. Pérez-Villarejo L, S. Martínez-Martínez S, Carrasco-Hurtado B, Eliche-Quesada D, Ureña-Nieto C, Sánchez-Soto PJ. Valorization and inertization of galvanic sludge waste in clay bricks. Appl. Clay Sci. 2015;105–106:89–99. doi.org/10.1016/j.clay.2014.12.022
  4. Schmidt B, Wolters R, Kaplin J, Schneiker T, Lobo-Recio MA, López F, et al. Rinse water regeneration in stainless steel pickling. Desalination. 2007;211(1–3):64–71. doi.org/10.1016/j.desal.2006.03.591
  5. Silva AC, Mello-Castellano S, Guitian F, Montero I, Esteban-Cubillo A, Sobrados I, et al. Incorporation of galvanic waste (Cr, Ni, Cu, Zn, Pb) in a soda-lime-borosilicate glass. J. Am. Ceram. Soc. 2008;91(4):1300–1305. doi.org/10.1111/j.1551-2916.2008.02311.x
  6. Scheer G, Huckshold M. Design and Manufacturing according to Hot-Dip Galvanizing Requirements. En: Handbook of Hot-Dip Galvanization. Maaß P, Peißker P. Germany: WILEY-VCH; 2011. p. 239-289. doi.org/10.1002/9783527636884.ch7
  7. Hernández JD. Detection of the critical points of the hot-dip galvanizing process: a focus on sustainability and sustainable development (tesis de maestria). Medellín, Colombia: Universidad Nacional de Colombia; 2018. doi.org/10.13140/RG.2.2.19244.56960
  8. Sinha MK, Pramanik S, Sahu SK, Prasad LB, Jha MK, Pandey BD. Development of an efficient process for the recovery of zinc and iron as value added products from the waste chloride solution. Sep. Purif. Technol. 2016;167:37–44. doi.org/10.1016/j.seppur.2016.04.049
  9. Bao S, Tang L, Li K, Ning P, Peng J, Guo H, et al. Highly selective removal of Zn(II) ion from hot-dip galvanizing pickling waste with amino-functionalized Fe3O4@SiO2 magnetic nano-adsorbent. J. Colloid Interface Sci. 2016;462:235–242. doi.org/10.1016/j.jcis.2015.10.011
  10. Guo B, Liu B, Yang J, Zhang S. The mechanisms of heavy metal immobilization by cementitious material treatments and thermal treatments: A review. J. Environ. Manage. 2017;193:410–422. doi.org/10.1016/j.jenvman.2017.02.026
  11. Zhang M, Chen C, Mao L, Wu Q. Use of electroplating sludge in production of fired clay bricks: Characterization and environmental risk evaluation. Constr. Build. Mater. 2018;159:27–36. doi.org/10.1016/j.conbuildmat.2017.10.130
  12. Lian J, Ouyang Q, Tsang PE, Fang Z. Fentonlike catalytic degradation of tetracycline by magnetic palygorskite nanoparticles prepared from steel pickling waste liquor,” Appl. Clay Sci. 2019;182:105273 doi.org/10.1016/j.clay.2019.105273
  13. Li Y, Chen D, Fan S, Yang T. Enhanced visible light assisted Fenton-like degradation of dye via metal-doped zinc ferrite nanosphere prepared from metal-rich industrial wastewater. J. Taiwan Inst. Chem. Eng. 2019;96:185–192. doi.org/10.1016/j.jtice.2018.11.006
  14. Zueva SB, Ferella F, Innocenzi V, De Michelis I, Corradini V, Ippolito NM, et al. Recovery of zinc from treatment of spent acid solutions from the pickling stage of galvanizing plants. Sustain. 2021;13(1):1–8. doi.org/10.3390/su13010407
  15. Akbari A, Amini M, Tarassoli A, Eftekhari-Sis B, Ghasemian N, Jabbari E. Transition metal oxide nanoparticles as efficient catalysts in oxidation reactions. Nano-Structures & Nano-Objects. 2018;14:19–48. doi.org/10.1016/j.nanoso.2018.01.006
  16. Roy SD, Das KC, Dhar SS. Conventional to green synthesis of magnetic iron oxide nanoparticles; its application as catalyst, photocatalyst and toxicity: A short review. Inorg. Chem. Commun. 2021;134:109050. doi.org/10.1016/j.inoche.2021.109050
  17. Doolette CL, Read TL, Howell NR, Cresswell T, Lombi E. Zinc from foliar-applied nanoparticle fertiliser is translocated to wheat grain: A 65Zn radiolabelled translocation study comparing conventional and novel foliar fertilisers. Sci. Total Environ. 2020;749:142369. doi.org/10.1016/j.scitotenv.2020.142369
  18. Andhare DD, Jadhav SA, Khedkar MV, Somvanshi SB, More SD, Jadhav KM. Structural and Chemical Properties of ZnFe2O4 Nanoparticles Synthesised by Chemical Co-Precipitation Technique. J. Phys. Conf. Ser. 2020;1644(1):012014. doi.org/10.1088/1742-6596/1644/1/012014
  19. Kang F, Wu M, Xiao B, Chen R, Wei Y, Liu H, et al. Facile synthesis of schwertmannite@akaganeite core/shell nanostructure from pickling waste liquor: Formation mechanism and potential application. J. Clean. Prod. 2020;260:120961. doi.org/10.1016/j.jclepro.2020.120961
  20. Picasso G, Vega J, Uzuriaga R, Ruiz GP. Synthesis of nanoparticles of magnetite by sol-gel and precipitation methods: study of chemical composition and structure. Rev Soc Quim Perú. 2012;78(3):170–182.
  21. Vinosha PA, Mely LA, Jeronsia JE, Krishnan S, Das SJ. Synthesis and properties of spinel ZnFe2O4 nanoparticles by facile co-precipitation route. Optik (Stuttg). 2017;134:99–108. doi.org/10.1016/j.ijleo.2017.01.018
  22. Verma A, Kore R, Corbin DR, Shiflett MB. Metal Recovery Using Oxalate Chemistry: A Technical Review. Ind. Eng. Chem. Res. 2019;58(34):15381–15393. doi.org/10.1021/acs.iecr.9b02598
  23. Mehrizadeh H, Niaei A, Tseng HH, Salari D, Khataee A. Synthesis of ZnFe2O4 nanoparticles for photocatalytic removal of toluene from gas phase in the annular reactor. J. Photochem. Photobiol. A Chem. 2017;332:188–195. doi.org/10.1016/j.jphotochem.2016.08.028
  24. Sonu, Sharma S, Dutta V, Raizada P, Hosseini-Bandegharaei A, Thakur V, et al. An overview of heterojunctioned ZnFe2O4 photocatalyst for enhanced oxidative water purification. J. Environ. Chem. Eng. 2021;9(5):105812. doi.org/10.1016/j.jece.2021.105812
  25. Abrahams SC, Bernstein JL. Remeasurement of the structure of hexagonal ZnO. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1969;25(7):1233–1236. doi.org/10.1107/s0567740869003876
  26. Verwey EJW, Heilmann EL. Physical properties and cation arrangement of oxides with spinel structures I. Cation arrangement in spinels. J. Chem. Phys. 1947;15(4):174–180. doi.org/10.1063/1.1746464