Síntese de micro e nanopartículas de efluentes de decapagem da indústria de galvanização a quente
Publicado 2023-02-28
Palavras-chave
- Palavras-chave: galvanização por imersão a quente, decapagem, nanopartículas, síntese química, ferro, zinco.
Como Citar
Copyright (c) 2023 Alejandro Ramírez Marín, Juan Diego Torres de la Ossa, Manuel Felipe Torres Perdomo, María José Vásquez Canabal, Luz Marina OCAMPO CARMONA
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Resumo
O processo de galvanização a quente é uma das técnicas de proteção contra corrosão mais utilizadas para o aço e consiste na imersão da peça de aço em um banho de zinco fundido. Este processo consiste em várias etapas e cada uma delas produz resíduos sólidos ou efluentes com teor metálico. Esses resíduos giram em torno de 1 000 000 t/ano em todo o mundo. O descarte seguro desses importantes é de grande importância para a proteção do meio ambiente. A etapa mais crítica desse processo é a decapagem, que gera efluentes muito complexos de tratar, mas de interesse para a obtenção de materiais de valor agregado. Neste artigo, micro e nanopartículas de ferro e zinco são obtidas a partir de quatro diferentes rotas de síntese química utilizando efluentes de decapagem da indústria de galvanização a quente como solução de partida, através de coprecipitação e síntese sol-gel, obtendo partículas de diferentes tamanhos, morfologias e estruturas cristalinas.
Downloads
Referências
- Culcasi A, Gueccia R, Randazzo S, Cipollina A, Micale G. Design of a novel membrane-integrated waste acid recovery process from pickling solution. J. Clean. Prod. 2019;236:117623. doi.org/10.1016/j.jclepro.2019.117623
- Magalhães JM, Silva JE, Castro FP, Labrincha JA. Physical and chemical characterisation of metal finishing industrial wastes. J. Environ. Manage. 2005;75(2):157–166. doi.org/10.1016/j.jenvman.2004.09.011
- Pérez-Villarejo L, S. Martínez-Martínez S, Carrasco-Hurtado B, Eliche-Quesada D, Ureña-Nieto C, Sánchez-Soto PJ. Valorization and inertization of galvanic sludge waste in clay bricks. Appl. Clay Sci. 2015;105–106:89–99. doi.org/10.1016/j.clay.2014.12.022
- Schmidt B, Wolters R, Kaplin J, Schneiker T, Lobo-Recio MA, López F, et al. Rinse water regeneration in stainless steel pickling. Desalination. 2007;211(1–3):64–71. doi.org/10.1016/j.desal.2006.03.591
- Silva AC, Mello-Castellano S, Guitian F, Montero I, Esteban-Cubillo A, Sobrados I, et al. Incorporation of galvanic waste (Cr, Ni, Cu, Zn, Pb) in a soda-lime-borosilicate glass. J. Am. Ceram. Soc. 2008;91(4):1300–1305. doi.org/10.1111/j.1551-2916.2008.02311.x
- Scheer G, Huckshold M. Design and Manufacturing according to Hot-Dip Galvanizing Requirements. En: Handbook of Hot-Dip Galvanization. Maaß P, Peißker P. Germany: WILEY-VCH; 2011. p. 239-289. doi.org/10.1002/9783527636884.ch7
- Hernández JD. Detection of the critical points of the hot-dip galvanizing process: a focus on sustainability and sustainable development (tesis de maestria). Medellín, Colombia: Universidad Nacional de Colombia; 2018. doi.org/10.13140/RG.2.2.19244.56960
- Sinha MK, Pramanik S, Sahu SK, Prasad LB, Jha MK, Pandey BD. Development of an efficient process for the recovery of zinc and iron as value added products from the waste chloride solution. Sep. Purif. Technol. 2016;167:37–44. doi.org/10.1016/j.seppur.2016.04.049
- Bao S, Tang L, Li K, Ning P, Peng J, Guo H, et al. Highly selective removal of Zn(II) ion from hot-dip galvanizing pickling waste with amino-functionalized Fe3O4@SiO2 magnetic nano-adsorbent. J. Colloid Interface Sci. 2016;462:235–242. doi.org/10.1016/j.jcis.2015.10.011
- Guo B, Liu B, Yang J, Zhang S. The mechanisms of heavy metal immobilization by cementitious material treatments and thermal treatments: A review. J. Environ. Manage. 2017;193:410–422. doi.org/10.1016/j.jenvman.2017.02.026
- Zhang M, Chen C, Mao L, Wu Q. Use of electroplating sludge in production of fired clay bricks: Characterization and environmental risk evaluation. Constr. Build. Mater. 2018;159:27–36. doi.org/10.1016/j.conbuildmat.2017.10.130
- Lian J, Ouyang Q, Tsang PE, Fang Z. Fentonlike catalytic degradation of tetracycline by magnetic palygorskite nanoparticles prepared from steel pickling waste liquor,” Appl. Clay Sci. 2019;182:105273 doi.org/10.1016/j.clay.2019.105273
- Li Y, Chen D, Fan S, Yang T. Enhanced visible light assisted Fenton-like degradation of dye via metal-doped zinc ferrite nanosphere prepared from metal-rich industrial wastewater. J. Taiwan Inst. Chem. Eng. 2019;96:185–192. doi.org/10.1016/j.jtice.2018.11.006
- Zueva SB, Ferella F, Innocenzi V, De Michelis I, Corradini V, Ippolito NM, et al. Recovery of zinc from treatment of spent acid solutions from the pickling stage of galvanizing plants. Sustain. 2021;13(1):1–8. doi.org/10.3390/su13010407
- Akbari A, Amini M, Tarassoli A, Eftekhari-Sis B, Ghasemian N, Jabbari E. Transition metal oxide nanoparticles as efficient catalysts in oxidation reactions. Nano-Structures & Nano-Objects. 2018;14:19–48. doi.org/10.1016/j.nanoso.2018.01.006
- Roy SD, Das KC, Dhar SS. Conventional to green synthesis of magnetic iron oxide nanoparticles; its application as catalyst, photocatalyst and toxicity: A short review. Inorg. Chem. Commun. 2021;134:109050. doi.org/10.1016/j.inoche.2021.109050
- Doolette CL, Read TL, Howell NR, Cresswell T, Lombi E. Zinc from foliar-applied nanoparticle fertiliser is translocated to wheat grain: A 65Zn radiolabelled translocation study comparing conventional and novel foliar fertilisers. Sci. Total Environ. 2020;749:142369. doi.org/10.1016/j.scitotenv.2020.142369
- Andhare DD, Jadhav SA, Khedkar MV, Somvanshi SB, More SD, Jadhav KM. Structural and Chemical Properties of ZnFe2O4 Nanoparticles Synthesised by Chemical Co-Precipitation Technique. J. Phys. Conf. Ser. 2020;1644(1):012014. doi.org/10.1088/1742-6596/1644/1/012014
- Kang F, Wu M, Xiao B, Chen R, Wei Y, Liu H, et al. Facile synthesis of schwertmannite@akaganeite core/shell nanostructure from pickling waste liquor: Formation mechanism and potential application. J. Clean. Prod. 2020;260:120961. doi.org/10.1016/j.jclepro.2020.120961
- Picasso G, Vega J, Uzuriaga R, Ruiz GP. Synthesis of nanoparticles of magnetite by sol-gel and precipitation methods: study of chemical composition and structure. Rev Soc Quim Perú. 2012;78(3):170–182.
- Vinosha PA, Mely LA, Jeronsia JE, Krishnan S, Das SJ. Synthesis and properties of spinel ZnFe2O4 nanoparticles by facile co-precipitation route. Optik (Stuttg). 2017;134:99–108. doi.org/10.1016/j.ijleo.2017.01.018
- Verma A, Kore R, Corbin DR, Shiflett MB. Metal Recovery Using Oxalate Chemistry: A Technical Review. Ind. Eng. Chem. Res. 2019;58(34):15381–15393. doi.org/10.1021/acs.iecr.9b02598
- Mehrizadeh H, Niaei A, Tseng HH, Salari D, Khataee A. Synthesis of ZnFe2O4 nanoparticles for photocatalytic removal of toluene from gas phase in the annular reactor. J. Photochem. Photobiol. A Chem. 2017;332:188–195. doi.org/10.1016/j.jphotochem.2016.08.028
- Sonu, Sharma S, Dutta V, Raizada P, Hosseini-Bandegharaei A, Thakur V, et al. An overview of heterojunctioned ZnFe2O4 photocatalyst for enhanced oxidative water purification. J. Environ. Chem. Eng. 2021;9(5):105812. doi.org/10.1016/j.jece.2021.105812
- Abrahams SC, Bernstein JL. Remeasurement of the structure of hexagonal ZnO. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1969;25(7):1233–1236. doi.org/10.1107/s0567740869003876
- Verwey EJW, Heilmann EL. Physical properties and cation arrangement of oxides with spinel structures I. Cation arrangement in spinels. J. Chem. Phys. 1947;15(4):174–180. doi.org/10.1063/1.1746464