CoMo supported on calcined (MeFeAl) tertiary hydrotalcites (Me2+: Co2+, Ni2+, Mg2+ or Zn2+) for dibenzothiophene hydrodesulfurization reaction
Published 2023-06-30
Keywords
- hydrotalcite, hydrodesulfurization, dibenzothiophene, cetane number, gas-oil, Diesel.,
- hydrotalcite,
- hydrodesulfurization,
- dibenzothiophene,
- cetane number
- gas-oil,
- diesel ...More
How to Cite
Copyright (c) 2023 Edwin Oviedo, Carlos Linares, Sylvette Brunet
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
Five tertiary hydrotalcites containing Fe3+ and Al3+ (M3+) as trivalent cations, and Mg2+, Co2+, Ni2+ or Zn2+ (M2+) as divalent cations were synthesized. A [M+3/(M3++M2+)] ratio of 0.22 and a [Fe3+/Al3+] ratio of 0.66 were kept for all synthesis with exception of a MgFeAl hydrotalcite whose [Fe3+/Al3+] ratio was duplicated to 1.32. The mixed oxides from these hydrotalcytes were used as supports of the active phase (Mo) promoting with Co. As-synthesized hydrotalcites, supports and their catalytic precursors were characterized by techniques such as chemical analysis by X-ray fluorescence, surface measurements, X-ray diffraction (XRD), CO2 temperature programmed desorption (CO2-TPD), elemental analysis (S and C) and high-resolution transmission electron microscopy (HRTEM). All catalytic precursors were tested in the reactions of dibenzothiophene hydrodesulfurization, showing the following order of activity: CoMo/γ-Al2O3>CoMo/MgFeAl(0.66)> CoMo/MgFeAl(1.32)> CoMo/CoFeAl> CoMo/NiFeAl> CoMo/ZnFeAl, The catalytic activity and selectivity towards the formation of hydrogenation products over direct desulfurization (HID/DSD) increased as the basicity of the catalyst increased. These results were associated to (fMo) Mo fraction and the nature of supports. It is important to mention that the catalysts: CoMo/MgFeAl(0.66) and CoMo/MgFeAl(1.32) showed the highest selectivity towards the hydrogenation route compared to the reference catalyst (CoMo/γ-Al2O3). Additionally, the activity of the CoMo/MgFeAL(0.66) catalyst towards the HID pathway was the highest, even exceeding the activity of CoMo/γ-Al2O3.
Downloads
References
- United Nations. The Paris Agreement. Paris, Francia: UN; 2015. Disponible en www.un.org/en/climatechange/paris-agreement
- Brunet S, Mey D, Perot G, Bouchy C, Diehl F. On the hydrodesulfurization of FCC gasoline: A review. Appl. Catal A: General. 2005;278:143-172. doi.org/10.1016/j.apcata.2004.10.012
- Klimova T, Solís-Casado D, Ramírez J. New selective Mo and NiMo HDS catalysts supported on Al2O3–MgO (x) mixed oxides. Catal. Today. 1998;43:135-146. doi.org/10.1016/S0920-5861(98)00142-4
- Solís-Casado D, Escobar-Alarcòn L, Klimova T, Escobar-Aguilar J, Rodriguez-Castellòn E, Cecilia JA, et al. Catalytic performance of CoMo/Al2O3-MgO-Li(x) formulations in DBT hydrodesulfurization. Catal. Today. 2016;271:35-44. doi.org/10.1016/j.cattod.2015.07.046
- Arias S, Licea YE, Palacio LA, Faro Jr A. Unsupported NiMoAl hydrotreating catalysts prepared from NiAl-terephthalate hydrotalcites exchanged with heptamolybdate. Catal Today. 2013;213:198-205. doi.org/10.1016/j.cattod.2013.02.029
- Daage M, Chianelli RR. Structure-Function Relations in Molybdenum Sulfide Catalysts: The “Rim-Edge” Model. J. Catal. 1994;149:414-427. doi.org/10.1006/jcat.1994.1308
- López-Cruz C, Guzman J, Cao G, Martínez C, Corma A. Modifying the catalytic properties of hydrotreating NiMo–S phases by changing the electrodonor capacity of the support. Catal Today. 2021;382:130-141. doi.org/10.1016/j.cattod.2021.08.002
- Topsøe H, Clausen BS, Massoth FE. Hydrotreating Catalysis. Catal Sci Technol. Vol 11. Berlin: Springer; 1996. doi.org/10.1007/978-3-642-61040-0_1
- Linares CF, López J, Scaffidi A, Scott C. Preparation of ZnNiMo/γ-alumina catalysts from recycled Ni for hydrotreating reactions. Appl. Catal. A: General. 2005;292:113-117. doi.org/10.1016/j.apcata.2005.05.013
- Guevara-Lara A, Cruz-Pérez AE, ContrerasValdez Z, Betancourt JM, Álvarez-Hernández A, Vrinart M. Effect of Ni promoter in the oxide precursors of MoS2/MgO–Al2O3 catalysts tested in dibenzothiophene hydrodesulphurization. Catal. Today. 2010;149:288-294. doi.org/10.1016/j.cattod.2009.09.014
- Linares CF, Amézqueta P, Scott C. Mo/MCM-41- Type mesoporous materials doubly promoted with Fe and Ni for hydrotreating reactions. Fuel. 2008;87:2817-2823. doi.org/10.1016/j.fuel.2008.01.013
- Balasamy RJ, Tope BB, Khurshid A, Al-Ali AAA, Sagata LAK, Asamoto M, et al. Ethylbenzene dehydrogenation over FeOx/(Mg,Zn)(Al) O catalysts derived from hydrotalcites: Role of MgO as basic sites. Appl. Catal. A: General. 2011;398:113-122. doi.org/10.1016/j.apcata.2011.03.023
- Cavani F, Trifirò F, Vaccari A. Hydrotalcitetype anionic clays: Preparation, properties and applications. Catal. Today. 1991;11:173-301. doi.org/10.1016/0920-5861(91)80068-K
- Sato T, Fujita H, Endo T, Shimada M, Tsunashima A. Synthesis of hydrotalcitelike compounds and their physico-chemical properties. React. Solid. 1988;5:219-228. doi.org/10.1016/0168-7336(88)80089-5
- Bravo-Suárez JJ, Páez-Mozo EA, Oyama ST. Review of the Synthesis of Layered Double Hydroxides: A Thermodynamic Approach. Quim. Nova. 2004;27:601-614. doi.org/10.1590/S0100-40422004000400015
- Cocheci L, Barvinshi P, Pode R, Popovici E, Seftel EM. Structural Characterization of Some Mg/Zn-Al Type Hydrotalcites Prepared for Chromate Sorption from Wastewater. Chem. Bull.Tech. Univ. Timisoara. 2010;55(69):40-45.
- Cotton FA, Wilkinson G, Murillo CA, Bochmann M. Advanced Inorganic Chemistry. 6 ed. New York: John Wiley & Sons; 1999.
- Parkinson GS. Iron oxide surfaces. Surf. Sci. Rep. 2016;71(1):272-365. doi.org/10.1016/j.surfrep.2016.02.001
- Pavel OD, Tichit D, Marcu I-C. Acido-basic and catalytic properties of transition-metal containing Mg–Al hydrotalcites and their corresponding mixed oxides. Appl. Clay Sci. 2012;61:52-58. doi.org/10.1016/j.clay.2012.03.006
- Jablońska M, Palomares AE, Chmielarz L. NOx storage/reduction catalysts based on Mg/Zn/Al/Fe hydrotalcite-like materials. Chem. Engineer. J. 2013;231:273-280. doi.org/10.1016/j.cej.2013.07.038
- Qwabe LQ, Friedrich HB, Singh S. Preferential oxidation of CO in a hydrogen rich feed stream using Co–Fe mixed metal oxide catalysts prepared from hydrotalcite precursors. J. Mol. Catal A: Chem. 2015;404-405:167-177. doi.org/10.1016/j.molcata.2015.04.020
- Yu JJ, Jiang Z, Zhu L, Hao ZP, Xu ZP. Adsorption/Desorption Studies of NOx on Well-Mixed Oxides Derived from Co−Mg/Al Hydrotalcite-like Compounds. J. Phys. Chem. B. 2006;110:4291-4300. doi.org/10.1021/jp056473f
- Benito P, Labajos FM, Rives V. Microwavetreated layered double hydroxides containing Ni2+ and Al3+: The effect of added Zn2+. J. Solid State Chem. 2006;179(12):3784-3797. doi.org/10.1016/j.jssc.2006.08.010
- Blanch-Raga N, Palomares AE, Martínez Triguero J, Puche M, Fetter G, Bosh P. The oxidation of trichloroethylene over different mixed oxides derived from hydrotalcites. Appl. Catal. B: Enviromental. 2014;160-161:129-134. doi.org/10.1016/j.apcatb.2014.05.014
- Chmielarz L, Kuśtrowski P, Rafalska-Łasocha A, Dziembaj R. Influence of Cu, Co and Ni cations incorporated in brucite-type layers on thermal behaviour of hydrotalcites and reducibility of the derived mixed oxide systems. Thermochimica Acta. 2002;395(1-2):225-236. doi.org/10.1016/S0040-6031(02)00214-9
- Gabrovska M, Edreva-Kardjieva R, Tenchev K, Tzvetkov P, Spojakina A, Petrov L. Effect of Co-content on the structure and activity of Co–Al hydrotalcite-like materials as catalyst precursors for CO oxidation. Appl. Catal. A: General. 2011;399:242-251. doi.org/10.1016/j.apcata.2011.04.007
- Al-Mashta F, Sheppard N, Lorenzelli V, Busca G. Infrared study of adsorption on oxygencovered α-Fe2O3: bands due to adsorbed oxygen and their modification by co-adsorbed hydrogen or water. J. Chem. Soc., Faraday Trans. 1. 1982;78:979-989. doi.org/10.1039/F19827800979
- Kumbhar PS, Sánchez-Valente J, Millet JMM, Figueras F. Mg-Fe hydrotalcite as a catalyst for the reduction of aromatic nitro compounds with hydrazine hydrate. J. Catal. 2000;191(2):467-473. doi.org/10.1006/jcat.2000.2827
- Amaya SL, Alonso-Núñez G, Cruz-Reyes J, Fuentes S, Echevarría A. Influence of the sulfidation temperature in a NiMoW catalyst derived from layered structure (NH4)Ni2OH(H2O)(MoO4)2. Fuel. 2015;139:575-583. doi.org/10.1016/j.fuel.2014.09.046
- Valencia D, Klimova T. Effect of the support composition on the characteristics of NiMo and CoMo/(Zr)SBA-15 catalysts and their performance in deep hydrodesulfurization. Catal. Today. 2011;166:91-101. doi.org/10.1016/j.cattod.2010.08.006
- Diao X, Ji N, Zheng M, Liu Q, Song C, Huang Y, et al. MgFe hydrotalcites-derived layered structure iron molybdenum sulfide catalyst for eugenol hydrodeoxygenation to produce phenolic chemical. J. Energy Chem. 2018;27(2):600-610. doi.org/10.1016/j.jechem.2017.07.008
- Qu L, Zhang W, Kooyman PJ, Prins R. MAS NMR, TPR, and TEM studies of the interaction of NiMo with alumina and silica–alumina supports. J. Catal. 2003;215(1):7-13. doi.org/10.1016/S0021-9517(02)00181-1
- Hensen EJM, Kooyman PJ, van der Meer Y, van der Kraan AM, de Beer VHJ, van Veen JAR, et al. The Relation between Morphology and Hydrotreating Activity for Supported MoS2 Particles. J. Catal. 2001;199:224-235. doi.org/10.1006/jcat.2000.3158
- Chen L, Xu Y, Wang B, Yun J, Dehghani F, Xie Y, et al. Mg-modified CoMo/Al2 O3 with enhanced catalytic activity for the hydrodesulfurization of 4,6 dimethyldibenzothiophene. Catal Commun. 2021;155:106316. doi.org/10.1016/j.catcom.2021.106316
- Huang L, Wang G, Qin Z, Du M, Dong M, Ge H, et al. A sulfur K-edge XANES study on the transfer of sulfur species in the reactive adsorption desulfurization of diesel oil over Ni/ZnO. Catal. Communication. 2010;11(7):592-596. doi.org/10.1016/j.catcom.2010.01.001
- Kliperac T, Zdražil M. Preparation of high activity MgO-supported Co-Mo and Ni-Mo sulfide hydrodesulfurization catalysts. J. Catal. 2002;206(2):314-320. doi.org/10.1006/jcat.2001.3488
- Chen W, Nie H, Li D, Long X, Van Gestel J, Maugé F. Effect of Mg addition on the structure and performance of sulfide Mo/Al2O3 in HDS and HDN reaction. J. Catal. 2016;344:420-433. doi.org/10.1016/j.jcat.2016.08.025