v. 36 n. 2 (2023): Revista ION
Artigos

Catalisadores CoMo suportados em hidrotalcitas terciárias calcinadas (MeFeAl, Me2+: Co2+, Ni2+, Mg2+, Zn2+) para a reação de hidrodessulfurização de dibenzotiofeno

Edwin Oviedo
Docente Universitario

Publicado 2023-06-30

Palavras-chave

  • hidrotalcite, hidrodessulfuração, dibenzotiofeno, número de cetano, gasóleo, Diesel,
  • diesel,
  • hidrodessulfuração,
  • gasóleo,
  • número de cetano,
  • dibenzotiofeno,
  • hidrotalcite
  • ...Mais
    Menos

Como Citar

Oviedo, E., Linares, C., & Brunet, S. (2023). Catalisadores CoMo suportados em hidrotalcitas terciárias calcinadas (MeFeAl, Me2+: Co2+, Ni2+, Mg2+, Zn2+) para a reação de hidrodessulfurização de dibenzotiofeno. REVISTA ION, 36(2), 47–62. https://doi.org/10.18273/revion.v36n2-2023004

Resumo

Cinco hidrotalcitas terciárias contendo Fe3+ e Al3+ e Mg2+, Co2+, Ni2+ ou Zn2+ como cátions divalentes foram sintetizadas. Uma razão molar [M+3/(M3++M2+)] de 0,22 e uma razão molar de [Fe3+/Al3+] de 0,66 foram mantidas; com exceção da hidrotalcita MgFeAl cuja razão molar foi dobrada. Os óxidos dessas hidrotalcitas foram utilizados como suportes da fase ativa (Mo) promovida com Co. Hidrotalcitas, óxidos mistos e seus precursores catalíticos foram caracterizados pelas técnicas de análise química por fluorescência de raios X, medições de superfície, difração de raios X (DRX), dessorção de temperatura programada (TPD-CO2), análise elementar (C e S) e microscopia eletrônica de transmissão de alta resolução. Todos os precursores catalíticos foram testados na reação de hidrodessulfuração do dibenzotiofeno apresentando a seguinte ordem de atividade: CoMo/γ-Al2
O3> CoMo/MgFeAl(0,66)> CoMo/MgFeAl(1,32)> CoMo/CoFeAl> CoMo/NiFeAl> Como/ZnFeAl. A atividade catalítica e a seletividade para a formação de produtos de hidrogenação com relação à dessulfuração direta (HID/DSD) aumentaram com o aumento da basicidade do catalisador. Esses resultados foram associados à fração de Mo (fMo) e à natureza do suporte. É importante mencionar que os catalisadores: CoMo/MgFeAl(0,66) e CoMo/MgFeAl(1,32) apresentaram a maior seletividade para a rota de hidrogenação em relação ao catalisador de referência. Adicionalmente, a atividade do catalisador CoMo/MgFeAL(0,66) em direção à via HID foi a mais alta, excedendo inclusive a atividade de CoMo/γ-Al2O3.

Downloads

Não há dados estatísticos.

Referências

  1. United Nations. The Paris Agreement. Paris, Francia: UN; 2015. Disponible en www.un.org/en/climatechange/paris-agreement
  2. Brunet S, Mey D, Perot G, Bouchy C, Diehl F. On the hydrodesulfurization of FCC gasoline: A review. Appl. Catal A: General. 2005;278:143-172. doi.org/10.1016/j.apcata.2004.10.012
  3. Klimova T, Solís-Casado D, Ramírez J. New selective Mo and NiMo HDS catalysts supported on Al2O3–MgO (x) mixed oxides. Catal. Today. 1998;43:135-146. doi.org/10.1016/S0920-5861(98)00142-4
  4. Solís-Casado D, Escobar-Alarcòn L, Klimova T, Escobar-Aguilar J, Rodriguez-Castellòn E, Cecilia JA, et al. Catalytic performance of CoMo/Al2O3-MgO-Li(x) formulations in DBT hydrodesulfurization. Catal. Today. 2016;271:35-44. doi.org/10.1016/j.cattod.2015.07.046
  5. Arias S, Licea YE, Palacio LA, Faro Jr A. Unsupported NiMoAl hydrotreating catalysts prepared from NiAl-terephthalate hydrotalcites exchanged with heptamolybdate. Catal Today. 2013;213:198-205. doi.org/10.1016/j.cattod.2013.02.029
  6. Daage M, Chianelli RR. Structure-Function Relations in Molybdenum Sulfide Catalysts: The “Rim-Edge” Model. J. Catal. 1994;149:414-427. doi.org/10.1006/jcat.1994.1308
  7. López-Cruz C, Guzman J, Cao G, Martínez C, Corma A. Modifying the catalytic properties of hydrotreating NiMo–S phases by changing the electrodonor capacity of the support. Catal Today. 2021;382:130-141. doi.org/10.1016/j.cattod.2021.08.002
  8. Topsøe H, Clausen BS, Massoth FE. Hydrotreating Catalysis. Catal Sci Technol. Vol 11. Berlin: Springer; 1996. doi.org/10.1007/978-3-642-61040-0_1
  9. Linares CF, López J, Scaffidi A, Scott C. Preparation of ZnNiMo/γ-alumina catalysts from recycled Ni for hydrotreating reactions. Appl. Catal. A: General. 2005;292:113-117. doi.org/10.1016/j.apcata.2005.05.013
  10. Guevara-Lara A, Cruz-Pérez AE, ContrerasValdez Z, Betancourt JM, Álvarez-Hernández A, Vrinart M. Effect of Ni promoter in the oxide precursors of MoS2/MgO–Al2O3 catalysts tested in dibenzothiophene hydrodesulphurization. Catal. Today. 2010;149:288-294. doi.org/10.1016/j.cattod.2009.09.014
  11. Linares CF, Amézqueta P, Scott C. Mo/MCM-41- Type mesoporous materials doubly promoted with Fe and Ni for hydrotreating reactions. Fuel. 2008;87:2817-2823. doi.org/10.1016/j.fuel.2008.01.013
  12. Balasamy RJ, Tope BB, Khurshid A, Al-Ali AAA, Sagata LAK, Asamoto M, et al. Ethylbenzene dehydrogenation over FeOx/(Mg,Zn)(Al) O catalysts derived from hydrotalcites: Role of MgO as basic sites. Appl. Catal. A: General. 2011;398:113-122. doi.org/10.1016/j.apcata.2011.03.023
  13. Cavani F, Trifirò F, Vaccari A. Hydrotalcitetype anionic clays: Preparation, properties and applications. Catal. Today. 1991;11:173-301. doi.org/10.1016/0920-5861(91)80068-K
  14. Sato T, Fujita H, Endo T, Shimada M, Tsunashima A. Synthesis of hydrotalcitelike compounds and their physico-chemical properties. React. Solid. 1988;5:219-228. doi.org/10.1016/0168-7336(88)80089-5
  15. Bravo-Suárez JJ, Páez-Mozo EA, Oyama ST. Review of the Synthesis of Layered Double Hydroxides: A Thermodynamic Approach. Quim. Nova. 2004;27:601-614. doi.org/10.1590/S0100-40422004000400015
  16. Cocheci L, Barvinshi P, Pode R, Popovici E, Seftel EM. Structural Characterization of Some Mg/Zn-Al Type Hydrotalcites Prepared for Chromate Sorption from Wastewater. Chem. Bull.Tech. Univ. Timisoara. 2010;55(69):40-45.
  17. Cotton FA, Wilkinson G, Murillo CA, Bochmann M. Advanced Inorganic Chemistry. 6 ed. New York: John Wiley & Sons; 1999.
  18. Parkinson GS. Iron oxide surfaces. Surf. Sci. Rep. 2016;71(1):272-365. doi.org/10.1016/j.surfrep.2016.02.001
  19. Pavel OD, Tichit D, Marcu I-C. Acido-basic and catalytic properties of transition-metal containing Mg–Al hydrotalcites and their corresponding mixed oxides. Appl. Clay Sci. 2012;61:52-58. doi.org/10.1016/j.clay.2012.03.006
  20. Jablońska M, Palomares AE, Chmielarz L. NOx storage/reduction catalysts based on Mg/Zn/Al/Fe hydrotalcite-like materials. Chem. Engineer. J. 2013;231:273-280. doi.org/10.1016/j.cej.2013.07.038
  21. Qwabe LQ, Friedrich HB, Singh S. Preferential oxidation of CO in a hydrogen rich feed stream using Co–Fe mixed metal oxide catalysts prepared from hydrotalcite precursors. J. Mol. Catal A: Chem. 2015;404-405:167-177. doi.org/10.1016/j.molcata.2015.04.020
  22. Yu JJ, Jiang Z, Zhu L, Hao ZP, Xu ZP. Adsorption/Desorption Studies of NOx on Well-Mixed Oxides Derived from Co−Mg/Al Hydrotalcite-like Compounds. J. Phys. Chem. B. 2006;110:4291-4300. doi.org/10.1021/jp056473f
  23. Benito P, Labajos FM, Rives V. Microwavetreated layered double hydroxides containing Ni2+ and Al3+: The effect of added Zn2+. J. Solid State Chem. 2006;179(12):3784-3797. doi.org/10.1016/j.jssc.2006.08.010
  24. Blanch-Raga N, Palomares AE, Martínez Triguero J, Puche M, Fetter G, Bosh P. The oxidation of trichloroethylene over different mixed oxides derived from hydrotalcites. Appl. Catal. B: Enviromental. 2014;160-161:129-134. doi.org/10.1016/j.apcatb.2014.05.014
  25. Chmielarz L, Kuśtrowski P, Rafalska-Łasocha A, Dziembaj R. Influence of Cu, Co and Ni cations incorporated in brucite-type layers on thermal behaviour of hydrotalcites and reducibility of the derived mixed oxide systems. Thermochimica Acta. 2002;395(1-2):225-236. doi.org/10.1016/S0040-6031(02)00214-9
  26. Gabrovska M, Edreva-Kardjieva R, Tenchev K, Tzvetkov P, Spojakina A, Petrov L. Effect of Co-content on the structure and activity of Co–Al hydrotalcite-like materials as catalyst precursors for CO oxidation. Appl. Catal. A: General. 2011;399:242-251. doi.org/10.1016/j.apcata.2011.04.007
  27. Al-Mashta F, Sheppard N, Lorenzelli V, Busca G. Infrared study of adsorption on oxygencovered α-Fe2O3: bands due to adsorbed oxygen and their modification by co-adsorbed hydrogen or water. J. Chem. Soc., Faraday Trans. 1. 1982;78:979-989. doi.org/10.1039/F19827800979
  28. Kumbhar PS, Sánchez-Valente J, Millet JMM, Figueras F. Mg-Fe hydrotalcite as a catalyst for the reduction of aromatic nitro compounds with hydrazine hydrate. J. Catal. 2000;191(2):467-473. doi.org/10.1006/jcat.2000.2827
  29. Amaya SL, Alonso-Núñez G, Cruz-Reyes J, Fuentes S, Echevarría A. Influence of the sulfidation temperature in a NiMoW catalyst derived from layered structure (NH4)Ni2OH(H2O)(MoO4)2. Fuel. 2015;139:575-583. doi.org/10.1016/j.fuel.2014.09.046
  30. Valencia D, Klimova T. Effect of the support composition on the characteristics of NiMo and CoMo/(Zr)SBA-15 catalysts and their performance in deep hydrodesulfurization. Catal. Today. 2011;166:91-101. doi.org/10.1016/j.cattod.2010.08.006
  31. Diao X, Ji N, Zheng M, Liu Q, Song C, Huang Y, et al. MgFe hydrotalcites-derived layered structure iron molybdenum sulfide catalyst for eugenol hydrodeoxygenation to produce phenolic chemical. J. Energy Chem. 2018;27(2):600-610. doi.org/10.1016/j.jechem.2017.07.008
  32. Qu L, Zhang W, Kooyman PJ, Prins R. MAS NMR, TPR, and TEM studies of the interaction of NiMo with alumina and silica–alumina supports. J. Catal. 2003;215(1):7-13. doi.org/10.1016/S0021-9517(02)00181-1
  33. Hensen EJM, Kooyman PJ, van der Meer Y, van der Kraan AM, de Beer VHJ, van Veen JAR, et al. The Relation between Morphology and Hydrotreating Activity for Supported MoS2 Particles. J. Catal. 2001;199:224-235. doi.org/10.1006/jcat.2000.3158
  34. Chen L, Xu Y, Wang B, Yun J, Dehghani F, Xie Y, et al. Mg-modified CoMo/Al2 O3 with enhanced catalytic activity for the hydrodesulfurization of 4,6 dimethyldibenzothiophene. Catal Commun. 2021;155:106316. doi.org/10.1016/j.catcom.2021.106316
  35. Huang L, Wang G, Qin Z, Du M, Dong M, Ge H, et al. A sulfur K-edge XANES study on the transfer of sulfur species in the reactive adsorption desulfurization of diesel oil over Ni/ZnO. Catal. Communication. 2010;11(7):592-596. doi.org/10.1016/j.catcom.2010.01.001
  36. Kliperac T, Zdražil M. Preparation of high activity MgO-supported Co-Mo and Ni-Mo sulfide hydrodesulfurization catalysts. J. Catal. 2002;206(2):314-320. doi.org/10.1006/jcat.2001.3488
  37. Chen W, Nie H, Li D, Long X, Van Gestel J, Maugé F. Effect of Mg addition on the structure and performance of sulfide Mo/Al2O3 in HDS and HDN reaction. J. Catal. 2016;344:420-433. doi.org/10.1016/j.jcat.2016.08.025