Vol. 29 No. 1 (2016): Revista ION
Articles

Acidogenic potential assessment to VFA production from sugar cane molasses as valorization of this by-product

María Angélica Palomino
Facultad de Ingeniería Ambiental. Universidad Antonio Nariño
María Fernanda Ortegón
Facultad de Ingeniería Ambiental. Universidad Santo Tomás
Tatiana Rojas Betancourt
Facultad de Ingeniería Ambiental. Universidad Antonio Nariño
Julián Martínez
Facultad de Ingeniería Ambiental. Universidad Antonio Nariño
Juan Valderrama
Facultad de Ingeniería Ambiental. Universidad Antonio Nariño
Rafael Barragán
Facultad de Ingeniería Ambiental. Universidad Santo Tomás
Aníbal Pérez
Facultad de Ingeniería Ambiental. Universidad Antonio Nariño
Héctor Luna Wandurraga
Facultad de Ingeniería Ambiental. Universidad Antonio Nariño

Published 2016-07-15

Keywords

  • Anaerobic Digestion,
  • Net Degree of Acidification,
  • Volatile Fatty Acids,
  • Biorefineries,
  • Sugarcane Molasses.

How to Cite

Palomino, M. A., Ortegón, M. F., Betancourt, T. R., Martínez, J., Valderrama, J., Barragán, R., Pérez, A., & Luna Wandurraga, H. (2016). Acidogenic potential assessment to VFA production from sugar cane molasses as valorization of this by-product. Revista ION, 29(1). https://doi.org/10.18273/revion.v29n1-2016006

Abstract

The acidogenic potential of molasses from the sugar industry was evaluated using 4 different Organic Loading Rates (OLR) (6.02±4.33; 13.96±7.11; 15.81±4.83; 26.94±13.27kgCOD/m3 .d) in an upflow reactor with granular sludge. No pH control or methanogenesis inhibitors were used. The reactor was continuously operated during 148 days. The acidogenic potential was evaluated based on the net degree of acidification (DAn). For the first 3 OLR, %DAn did not show any significant variability (29.46 ± 13.01; 20.23 ± 13.67; 24.63 ± 19.49), but for the highest OLR, %DAn dropped to a third of its initial value (10.21 ± 7.14), although the volatile fatty acid (VFA) concentration was the highest (2644.89mgCOD/L). Also, a COD balance was done for each of the 4 OLR. The VFA percentage in the effluent was assumed to be the most easily fermentable organic fraction in the effluent. The obtained results suggest that an internal recirculation of the effluent could help to increase the %DAn so the produced VFA can be used as substrate for the obtention of other valuable bioproducts. This article describes an upflow reactor is used as an alternative to those studied (CSRT and batch) presenting different results.

Downloads

Download data is not yet available.

References

[1] Silva FC, Serafim LS, Nadáis H, Arroja L, Cápela I. Acidogenic fermentation towards valorisation of organic waste streams into volatile fatty acids. Chem Biochem Eng Q. 2013;11(4):467–76.

[2] Pavlostathis SG, Giraldo-Gomez E. Kinetics of anaerobic treatment. Water Sci Technol. 1991;24:35–59.

[3] Bastidas-Oyanedel J-R, Bonk F, Thomsen MH, Schmidt JE. Dark fermentation biorefinery in the present and future (bio)chemical industry. Rev Environ Sci Bio/Technology. 2015;14(3):473–98.

[4] Demirbas A. Biorefineries: Current activities and future developments. Energy Convers Manag. 2009;50(11):2782–801.

[5] Reddy CSK, Ghai R, Rashmi, Kalia VC. Polyhydroxyalkanoates: an overview. Bioresour. Technol. 2003;87(2):137–46.

[6] Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS. Fermentative butanol production by clostridia. Biotechnol Bioeng. 2008;101(2):209–28.

[7] Hong C, Haiyun W. Optimization of volatile fatty acid production with co-substrate of food wastes and dewatered excess sludge using response surface methodology. Bioresour. Technol. 2010;101(14):5487–93.

[8] Dahiya S, Sarkar O, Swamy YV, Venkata Mohan S. Acidogenic fermentation of food waste for volatile fatty acid production with cogeneration of biohydrogen. Bioresour. Technol. 2015;182:103–13.

[9] Lim S-J, Kim BJ, Jeong C-M, Choi J, Ahn YH, Chang HN. Anaerobic organic acid production of food waste in once-a-day feeding and drawing-off bioreactor. Bioresour. Technol. 2008;99(16):7866–74.

[10]Gameiro T, Sousa F, Silva FC, Couras C, Lopes M, Louros V, et al. Olive oil mill wastewater to volatile fatty acids: statistical study of the acidogenic process. Water, Air, Soil Pollut. 2015;226(4):115-28.

[11] Bertin L, Lampis S, Todaro D, Scoma A, Vallini G, Marchetti L, et al. Anaerobic acidogenic digestion of olive mill wastewaters in biofilm reactors packed with ceramic filters or granular activated carbon. Water Res. 2010;44(15):4537–49.

[12]Marino-Marmolejo EN, Corbalá-Robles L, Cortez-Aguilar RC, Contreras-Ramos SM, Bolaños-Rosales RE, Davila-Vazquez G. Tequila vinasses acidogenesis in a UASB reactor with Clostridium predominance. Springerplus. 2015;4(1):419.

[13]Vergine P, Sousa F, Lopes M, Silva F, Gameiro T, Nadais H, et al. Synthetic soft drink wastewater suitability for the production of volatile fatty acids. Process Biochem. 2015;50(8):1308–12.

[14]Cardona Echavarría AC, Mora Martínez AL, Marín Montoya M. Identificación molecular de bacterias productoras de polihidroxialcanoatos en subproductos de lácteos y caña de azúcar. Rev Fac Nac Agron. 2013;66(2):7129–40.

[15]Asocaña. Informe anual de Asocaña 2011- 2012. Asocaña. Colombia; 2012;1–104.

[16]Asocaña. Aspectos Generales del Sector Azucarero El dulce sabor del 2013-2014. Colombia; 2014;116.

[17]Albuquerque MGE, Eiroa M, Torres C, Nunes BR, Reis MAM. Strategies for the development of a side stream process for polyhydroxyalkanoate (PHA) production from sugar cane molasses. J. Biotechnol. 2007;130(4) 411–21.

[18]Zehnder AJB, Huser BA, Brock TD, Wuhrmann K. Characterization of an acetate-decarboxylating, non-hydrogenoxidizing methane bacterium. Arch Microbiol. 1980;124:1–11.

[19]Field J. Medición de parámetros en reactores del manto de lodos anaeróbicos de flujo ascendente, Universidad Agrícola de Wageningen Holanda En: Universidad del Valle, Corporación Autónoma Regional del Cauca, Universidad Agrícola de W ageningen. Arranque y operación de sistema de flujo ascendente con manto de lodos UASB. Santiago de Cali: Universidad del Valle; 1987.

[20]APHA, AWWA, and WEF. Standard Methods for the Examination of Water and Wastewater 21st ed. Washington D.C.: American Public Health Association; 2005.