Vol. 29 No. 1 (2016): Revista ION
Articles

Perspectives of Biochemical Methane Potential - BMP test for control the anaerobic digestion process of wastes

Lina Marcela Cárdenas Cleves
Facultad de Ingeniería. Universidad del Valle
Brayan Alexis Parra Orobio
Facultad de Ingeniería. Universidad del Valle
Patricia Torres Lozada
Facultad de Ingeniería. Universidad del Valle
Carlos Humberto Vásquez-Franco
Facultad de Ingeniería. Universidad del Valle

Published 2016-07-15

Keywords

  • Anaerobic Digestion,
  • Anaerobic Biodegradability,
  • Biochemical Methane Potential - BMP,
  • Organic Waste.

How to Cite

Cárdenas Cleves, L. M., Parra Orobio, B. A., Torres Lozada, P., & Vásquez-Franco, C. H. (2016). Perspectives of Biochemical Methane Potential - BMP test for control the anaerobic digestion process of wastes. Revista ION, 29(1). https://doi.org/10.18273/revion.v29n1-2016008

Abstract

Anaerobic digestion is a biological process that achieves two purposes simultaneously, waste treatment to control environmental pollution and the recovery and valorization of by-products generated: methane as a source of renewable energy and digestate for agricultural purposes. To determine the methane production capability, the anaerobic biodegradability of an organic substrate, the selection of potential substrates and inoculums and the performance prediction of full-scale digesters, bench scale procedures as Biochemical Methane Potential (BMP) test, are performed. This article shows a refection on different aspects related to this important test, such as the diversity in the experiment denomination, the different modifcations in operational and experimental conditions, the different use of measurement units, the required equations for methane quantifcation, among others, these have given place to various methodological approaches which differ in conditioning factors for its application and comparison with results of other studies. With this refection, the usefulness of this assay and the need to standardize it is ratifed. Therefore, the experimental and operational conditions and the appropriate units should be reported, to avoid methodological confusion and permit a greater reproducibility. Additionally, it is recommended to deepen in the methodological analyses of different measurement methods to obtaining comparable results.

Downloads

Download data is not yet available.

References

[1] Nkoa R. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: A review. Agron Sustain Dev. 2014;34(2):473-92.

[2] Owen WF, Stuckey DC, Healy Jr JB, Young LY, McCarty PL. Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res. 1979;13(6):485-92.

[3] Esposito G, Frunzo L, Liotta F, Panico A, Pirozzi F. Bio-methane potential tests to measure the biogas production from the digestion and co-digestion of complex organic substrates. Open Environ Engine J. 2012;5:1-8.

[4] Hansen TL, Schmidt JE, Angelidaki I, Marca E, la Cour Jansen J, Mosbæk H, et al. Method for determination of methane potentials of solid organic waste. Waste Manage. 2004;24(4):393-400.

[5] Chynoweth D, Turick C, Owens J, Jerger D, Peck M. Biochemical methane potential of biomass and waste feedstocks. Biomass Bioenerg. 1993;5(1):95-111.

[6] VDI. 4630. Fermentation of organic materials. Characterisation of the substrate, sampling, collection of material data, fermentation tests. Alemania: Verein Deutscher Ingenieure, 2006.

[7] Angelidaki I, Alves M, Bolzonella D, Borzacconi L, Campos JL, Guwy AJ, et al. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays. Water Sci. Technol. 2009;59:927-34.

[8] Gould MC. Bioenergy and Anaerobic Digestion. En: Bioenergy. Dahiya A, Editor. USA: Academic Press; 2014. p.297-317.

[9] Li YY, Gadow S, Niu Q. Biomass energy using methane and hydrogen from waste materials. En: Topical Themes in Energy and Resources. Tanaka Y, Norton M, Li Y, Editors. Japan: Springer Japan; 2015. p.131-57.

[10] Torres P. Perspectivas del tratamiento anaerobio de aguas residuales domésticas en países en desarrollo. Revista EIA. 2012;9(18):115-29.

[11] Zhang XJ. Anaerobic Process. En: Comprehensive Water Quality and Purification. Ahuja S, Editor. USA: Elsevier Inc; 2014. p. 108-122.

[12] Lesteur M, Bellon-Maurel V, Gonzalez C, Latrille E, Roger JM, Junqua G, et al. Alternative methods for determining anaerobic biodegradability: a review. Process Biochem. 2010;45:431-40.

[13] Buffiere P, Loisel D, Bernet N, Delgenes J. Towards new indicators for the prediction of solid waste anaerobic digestion properties. Water Sci. Technol. 2006;53(8):233-41.

[14] Esposito G, Frunzo L, Liotta F, Panico A, Pirozzi F. Bio-methane potential tests to measure the biogas production from the digestion and co-digestion of complex organic substrates. Open Environ Engine J. 2012;5:1-8.

[15] Lisboa MS, Lansing S. Characterizing food waste substrates for co-digestion through biochemical methane potential (BMP) experiments. Waste Manage. 2013;33(12):2664-9.

[16] Raposo F, Fernández-Cegrí V, de la Rubia MA, Borja R, Béline F, Cavinato C, et al. Biochemical methane potential (BMP) of solid organic substrates: Evaluation of anaerobic biodegradability using data from an international interlaboratory study. J Chem Technol Biot. 2011;86(8):1088-98.

[17] Raposo F, De La Rubia MA, Fernández-Cegrí V, Borja R. Anaerobic digestion of solid organic substrates in batch mode: An overview relating to methane yields and experimental procedures. Renew Sust Energ Rev. 2012;16(1):861-77.

[18] Neves L, Oliveira R, Alves MM. Influence of inoculum activity on the bio-methanization of a kitchen waste under different waste/inoculum ratios. Process Biochem. 2004;39:2019-24.

[19] Neves L, Ferreira R, Oliveira R, Alves MM. Influence of inocculum acclimation in the biodegradation rate and estimated biodegradability of cow manure, food waste and oil. Environ Eng Manag J. 2010;9:327-34.

[20] Aquino SF, Chernicharo CA, Foresti E, Santos MLF, Monteggia LO. Metodologias para determinação da atividade metanogênica específica (AME) em lodos anaeróbios. Eng sanit ambient. 2007;12(2):192-201.

[21] Torres P, Pérez A. Actividad Metanogénica Específica: Una herramienta de control y optimización de sistemas de tratamiento anaerobio de aguas residuales. Ingeniería de los Recursos Naturales y del Ambiente. 2010;(9):5-14.

[22] Raposo F, Banks CJ, Siegert I, Heaven S, Borja R. Influence of inoculum to substrate ratio on the biochemical methane potential of maize in batch tests. Process Biochem. 2006;41:1444-50.

[23] Sabry T. Application of the UASB inoculated with flocculent and granular sludge in treating sewage at different hydraulic shock loads.Bioresource Technol. 2008;99(10):4073-4077.

[24] Kuan-Yeow S, Duu-Jong L, Yuegen Y. Anaerobic granulation for wastewater treatment and bioenergy production: Advances and Prospects. En: Handbook of Clean Energy Systems. Jinyue Y, Editor. United Kingdom: John Wiley & Son Ltd; 2015. p. 1834.

[25] Ossa M, Fuentes L. Evaluación de inóculos procedentes de PTAR ́s municipales sobre la digestión anaerobia de la fracción orgánica de residuos sólidos municipales (trabajo de grado). Cali, Colombia: Universidad del Valle; 2015.

[26] Diaz BMC, Espitia VSE, Molina PF. Digestión Anaerobia: una aproximación a la tecnología. Colombia: Unilibros; 2002.

[27] Monteggia L. Proposta de metodologia para avaliação do parâmetro Atividade Metanogênica Específica. Em: 19º Congresso Brasileiro de Engenharia Sanitária e Ambiental, ABES; 1997 Set 14-19; Foz do Iguaçu, Brasil: Associação Brasileira de Engenharia Sanitária e Ambiental (ABES); 1997. p. 754-66.

[28] Rozzi A, Remigi E. Methods of assessing microbial activity and inhibition under anaerobic conditions: a literature review. Reviews in Environmen Sci Bio/Technol. 2004;3(2):93-115.

[29] Souto TF, Aquino SF, Silva QS, Chernicharo LCA. Influence of incubation conditions on the specific methanogenic activity test. Biodegradation. 2010;21:411-24.

[30] Ortiz J. Puesta a punto de una metodología para la determinación de la actividad metanogénica específica de un fango anaerobio mediante el sistema OxiTop®. Influencia de las principales variables experimentales (Tesis doctoral). Valencia, España: Universidad Politecnica de Valencia; 2011.

[31] De la Rubia M, Fernández-Cegrí V, Raposo F, Borja R. Influence of particle size and chemical composition on the performance and kinetics of anaerobic digestion process of sunflower oil cake in batch mode. Biochem Eng J. 2011;58:162-7.

[32] Labatut RA, Angenent LT, Scott NR. Biochemical methane potential and biodegradability of complex organic substrates. Bioresour. Technol. 2011;102(3):2255-64.

[33] Alves I. Análise Experimental do Potencial de Geração de Biogás em Resíduos Sólidos Urbanos. Recife, Brasil: Universidade Federal de Pernambuco; 2008.

[34] Fernández Rodríguez J, Pérez M, Romero LI. Mesophilic anaerobic digestion of the organic fraction of municipal solid waste: Optimisation of the semicontinuous process. Chem Eng J. 2012;193–194:10-5.

[35] Ağdağ ON, Sponza DT. Co-digestion of mixed industrial sludge with municipal solid wastes in anaerobic simulated landfilling bioreactors. J Hazard Mater. 2007;140(1):75-85.

[36] Lee DH, Behera SK, Kim JW, Park H-S. Methane production potential of leachate generated from Korean food waste recycling facilities: a lab-scale study. Waste Manage. 2009;29(2):876-82.

[37] Prabhudessai V, Ganguly A, Mutnuri S. Biochemical methane potential of agro wastes. J Energy. 2013:1-7.

[38] Koch K, Fernández YB, Drewes JE. Influence of headspace flushing on methane production in Biochemical Methane Potential (BMP) tests. Bioresour. Technol. 2015;186:173-8.

[39] Valcke D, Verstraete W. A practical method to estimate the acetoclastic methanogenic biomass in anaerobic sludges. J Water Pollut Control Fed. 1983;55(9):1191-5.

[40] Penna JA. Estudo da metodologia do teste de atividade metanogênica específica. Sao Paulo, Brasil: Universidade de Sao Paulo. Escola de Engenharia de Sao Carlos; 1994.

[41] Castorena H, Robles M, Rojas M, Robles R. Estudio Comparativo del aceite de aguacate y ácidos grasos utilizando espectroscopia infrarroja. En: IV Congreso Internacional XV Congreso Nacional de Ingeniería Bioquímica; 2012 abr 4-7; Morelia Mich, México: Instituto Politécnico Nacional CIBA-Tlaxcala; 2012.

[42] Giménez JB, Martí N, Ferrer J, Seco A. Methane recovery efficiency in a submerged anaerobic membrane bioreactor (SAnMBR) treating sulphate-rich urban wastewater: Evaluation of methane losses with the effluent. Bioresoruce Technol. 2012;118:67-72.

[43] Schievano A, Pognani M, D’Imporzano G, Adani F. Predicting anaerobic biogasification potential of ingestates and digestates of a full-scale biogas plant using chemical and biological parameters. Bioresour. Technol. 2008;99(17):8112-7.

[44] Ventura C. Productividad de metano a partir de residuos de cultivo de maíz y frijol. San Antonio de Oriente, Honduras: Escuela Agrícola Panamericana, Zamorano; 2014.

[45] Angelidaki I, Sanders W. Assessment of the anaerobic biodegradability of macropollutants. Rev Enviromen Sci BioTechnol. 2004;3(2):117-29.

[46] Strömberg S, Nistor M, Liu J. Towards eliminating systematic errors caused by the experimental conditions in Biochemical Methane Potential (BMP) tests. Waste Manage. 2014;34(11):1939-48.

[47] Lopes WS, Leite VD, Prasad S. Influence of inoculum on performance of anaerobic reactors for treating municipal solid waste. Bioresour. Technol. 2004;94(3):261-6.

[48] Strömberg S, Nistor M, Liu J. Early prediction of Biochemical Methane Potential through statistical and kinetic modelling of initial gas production. Bioresour. Technol. 2015;176:233-41.