Vol. 31 No. 2 (2018): Revista ION
Articles

Biochemical methane potential of Chlorella vulgaris: influence of thermal hydrolysis

Alexandra Cerón-Vivas
Facultad de Ingeniería Ambiental. Universidad Pontificia Bolivariana, km. 7 vía a Piedecuesta, Floridablanca, Colombia.
Jessica Paola Acosta
Facultad de Ingeniería Ambiental. Universidad Pontificia Bolivariana, km. 7 vía a Piedecuesta, Floridablanca, Colombia.
Lorraine Vanessa Alvear
Facultad de Ingeniería Ambiental. Universidad Pontificia Bolivariana, km. 7 vía a Piedecuesta, Floridablanca, Colombia.
Yolanda Gamarra
Facultad de Ingeniería Ambiental. Universidad Pontificia Bolivariana, km. 7 vía a Piedecuesta, Floridablanca, Colombia.
Portada

Published 2019-01-16

Keywords

  • microalgae,
  • pre-treatment,
  • anaerobic digestion,
  • methane production

How to Cite

Cerón-Vivas, A., Acosta, J. P., Alvear, L. V., & Gamarra, Y. (2019). Biochemical methane potential of Chlorella vulgaris: influence of thermal hydrolysis. Revista ION, 31(2). https://doi.org/10.18273/revion.v31n2-2018002

Abstract

Research on the biomass transformation into biofuels has increased in recent years. Anaerobic digestion is a biological process in which the main product obtained is biogas. Microalgal biomass produced in sewage treatment plants can be used as substrate for anaerobic digestion. However, to improve methane productivity, the breakdown of the microalgae cell wall through pre-treatments, is necessary. In this study,
the influence of thermal hydrolysis, as pre-treatment, on biochemical methane potential of Chlorella vulgaris was assessed. Inoculum quality used was evaluated through the trophic groups’ activities (hydrolytic, acidogenic and methanogenic). The influence of thermal hydrolysis on methane production was assessed applying the modified Gompertz model. This model was capable of predicting the final productivity of methane for the microalgae harvested by centrifugation and for those where thermal hydrolysis was applied. The maximum production rate increased from 18,4 ± 1,0 ml·g-1VS·d-1 to 29,0 ± 3,1 ml·g-1VS·d-1, when thermal hydrolysis was applied to microalgae. This can be due to the breaking of the cell wall, resulting in increase in the soluble organic matter and the methane gas production. The results obtained suggest that the thermal hydrolysis of the C. vulgaris can be used as pre-treatment to improve the performance of methane generation in anaerobic digestion.

Downloads

Download data is not yet available.

References

[1] Aslan S, Kapdan IK. Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng [Internet]. 2006 Nov [cited 2014 Jul 15];28(1):64–70. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0925857406000759.

[2] Cai T, Park SY, Li Y. Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renew Sustain Energy Rev [Internet]. 2013 Mar [cited 2014 Jul 14];19:360–9. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1364032112006429.

[3] Safi C, Zebib B, Merah O, Pontalier P-Y, Vaca-Garcia C. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renew Sustain Energy Rev. 2014;35:265–78.

[4] Singh J, Gu S. Commercialization potential of microalgae for biofuels production. Renew Sustain Energy Rev. 2010;14(9):2596–610.

[5] Chisti Y. Biodiesel from microalgae beats bioethanol. Trends Biotechnol. 2008;26:126–31.

[6] Mubarak M, Shaija A, Suchithra T V. Review on the extraction of lipid from microalgae for biodiesel production. Algal Res. 2015;7:117–23.

[7] Harun R, Danquah MK. Enzymatic hydrolysis of microalgal biomass for bioethanol production. Chem Eng J. 2011;168(3):1079–84.

[8] Lundquist IW. A realistic technology and engineering assessment of algae biofuel production. 2010.

[9] Alzate ME, Muñoz R, Rogalla F, Fdz-Polanco F, Pérez-Elvira SI. Biochemical methane potential of microalgae biomass after lipid extraction. Chem Eng J. 2014;243:405–10.

[10] Prajapati SK, Kaushik P, Malik A, Vijay VK. Phycoremediation coupled production of algal biomass, harvesting and anaerobic digestion: possibilities and challenges. Biotechnol Adv. 2013;31(8):1408–25.

[11] Prajapati SK, Malik A, Vijay VK. Comparative evaluation of biomass production and bioenergy generation potential of Chlorella spp. through anaerobic digestion. Appl Energy. 2014;114:790–7.

[12] Alzate ME, Muñoz R, Rogalla F, Fdz-Polanco F, Pérez-elvira SI. Biochemical methane potential of microalgae : Influence of substrate to inoculum ratio , biomass concentration and pretreatment. Bioresour Technol. 2012;123:488–94.

[13] González-Fernández C, Sialve B, Bernet N, Steyer JP. Comparison of ultrasound and thermal pretreatment of Scenedesmus biomass on methane production. Bioresour Technol. 2012;110:610–6.

[14] Passos F, Solé M, García J, Ferrer I. Biogas production from microalgae grown in wastewater: Effect of microwave pretreatment. Appl Energy. 2013;108:168–75.

[15] Klassen V, Blifernez-klassen O, Wobbe L, Schlüter A, Kruse O, Mussgnug JH. Efficiency and biotechnological aspects of biogas production from microalgal substrates. J Biotechnol. 2016;234:7–26.

[16] Bischoff H., Bold HC. Phycological studies IV. In: Some soil algae from Enchanted Rock and related algal species. Austin: University of Texas; 1963. p. 1–95.

[17] APHA, AWWA, WEF. Standard Methods for the Examination of Water and Wastewater. 22th editi. Washington DC.; 2012.

[18] Field J. Parametros operativos del manto de lodos anaeróbicos de flujo ascendente. In: Manual de Arranque y operación de flujo ascendente con manto de lodos - UASB. Cali: Universidad del Valle, CVC. Universidad Agrícola de Wageningen.; 1987. p. 270.

[19] Miller GL. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal Chem. 1953;31(3):426–8.

[20] Dubois M, Pilles K, Hamilton J, Smith F. Colorimetric method for determination of sugar and related substances. Anal Chem. 1956;28:350–6.

[21] Poirrier González P. Hidrólisis y acidificación psicrófila de moléculas complejas en sistemas anaerobios. Santiago de Compostela, España: Universidad de Santiago de Compostela; 2005.

[22] Zwietering MH, Jongenburger I, Rombouts FM, Van’t Riet K. Modeling of the bacterial growth curve. Appl Environ Microbiol. 1990;56(6):1875–81.

[23] Jiunn-Jyi L, Yu-You L, Noike T. Influences of pH and moisture content on the methane production in high-solids sludge digestion. Water Res. 1997;31(6):1518–24.

[24] Castro Echavez FL, Fernández Acosta NM, Delgado Chávez MJ. Disminución de la DQO en aguas de formación utilizando cepas bacterianas. Rev Técnica la Fac Ing Univ del Zulia. 2008;31(3):246–55.

[25] Herrera Soracá DM, Niño Bonilla DA. Evaluación del potencial producción de biogas a partir de aguas residuales provenientes de la industria palmera mediante la digestión anaerobia. Universidad Industrial de Santander; 2011.

[26]Instituto para la Diversificación y Ahorro de la Energía-IDAE. Biomasa:Digestores Anaerobios. [Internet]. Madrid, España: Instituto para la Diversificación y Ahorro de la Energía; 2007.48 p. Available from: http://www.idae.es/uploads/documentos/documentos_10737_Biomasa_digestores_07_a996b846.pdf.

[27] Quintero M, Castro L, Ortiz C, Guzmán C, Escalante H. Enhancement of starting up anaerobic digestion of lignocellulosic substrate: Fique’s bagasse as an example. Bioresour Technol. 2012;108:8–13.

[28] Regueiro L, Veiga P, Figueroa M, Alonso-Gutierrez J, Stams AJM, Lema JM, et al. Relationship between microbial activity and microbial community structure in six full-scale anaerobic digesters. Microbiol Res. 2012;167(10):581–9.

[29] Díaz-Báez MC, Vargas SLE, Pérez FM. Digestión anaerobia: una aproximacion a la tecnología. First. Bogotá D.C., Colombia: Universidad Nacional de Colombia; 2002. 168 p.

[30] Effebi KR, Baya T, Jupsin H, Vasel JL. Acidogenic and Methanogenic activities in Anaerobic Ponds. 2011;2(12):1–4.

[31] Soto M, Méndez R, Lema JM. Methanogenic and non-methanogenic activity tests. Theoretical basis and experimental set up. Water Res [Internet]. 1993 Aug [cited 2015 Sep 7];27(8):1361–76. Available from: http://www.sciencedirect.com/science/article/pii/0043135493902246.

[32] Passos F, Ferrer I. Influence of hydrothermal pretreatment on microalgal biomass anaerobic digestion and bioenergy production. Water Res [Internet]. 2014;68:364–73. Available from: http://dx.doi.org/10.1016/j.watres.2014.10.015.

[33] Cho S, Park S, Seon J, Yu J, Lee T. Evaluation of thermal, ultrasonic and alkali pretreatments on mixed-microalgal biomass to enhance anaerobic methane production. Bioresour Technol [Internet]. 2013 Sep [cited 2014 Jul 17];143:330–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23811066.

[34] Passos F, Ferrer I. Microalgae Conversion to Biogas: Thermal Pretreatment Contribution on Net Energy Production. Environ Sci Technol [Internet]. 2014 Jun 17;48(12):7171–8. Available from: https://doi.org/10.1021/es500982v.