Vol. 31 No. 2 (2018): Revista ION
Articles

Evaluation of sorption isotherms of grains and flour of amaranth(Amaranthus caudatus)

David Choque-Quispe
Universidad Nacional José María Arguedas, C.P. Ingeniería Agroindustrial, Andahuaylas, Apurímac, Perú,
Carlos A. Ligarda-Samanez
Universidad Nacional José María Arguedas, C.P. Ingeniería Agroindustrial, Andahuaylas, Apurímac, Perú,
Betsy S. Ramos-Pacheco
Universidad Nacional José María Arguedas, C.P. Ingeniería Agroindustrial, Andahuaylas, Apurímac, Perú,
Fredy Taipe-Pardo
Universidad Nacional José María Arguedas, C.P. Ingeniería Agroindustrial, Andahuaylas, Apurímac, Perú,
Diego E. Peralta-Guevara
Universidad Nacional José María Arguedas, C.P. Ingeniería Agroindustrial, Andahuaylas, Apurímac, Perú,
Aydeé M. Solano Reynoso
Universidad Tecnológica de los Andes, Andahuaylas, Apurímac, Perú
Portada

Published 2019-01-17

Keywords

  • Amaranth,
  • adsorption,
  • moisture of balance (Xe),
  • heat isosteric

How to Cite

Choque-Quispe, D., Ligarda-Samanez, C. A., Ramos-Pacheco, B. S., Taipe-Pardo, F., Peralta-Guevara, D. E., & Solano Reynoso, A. M. (2019). Evaluation of sorption isotherms of grains and flour of amaranth(Amaranthus caudatus). Revista ION, 31(2). https://doi.org/10.18273/revion.v31n2-2018005

Abstract

The main objective was to evaluate the adsorption isotherms of grain and flour amaranth (Amaranthus caudatus) varieties Oscar White, Noel Vietmeyer and CICA, it was used gravimetric method for static intervals relative humidity 10 to 90% at temperatures of were studied 11 mathematical models and they were modeled to experimental data through RNL, taking as a convergence criterion the correlation coefficient R2 and the average relative error %E, thus the model of Adam and Shove present best fit for grains of amaranth, while the flour was Peleg model. Was also observed that the storage temperature influences significantly (p value<0.05) in the equilibrium moisture (Xe) grain and flour amaranth. The heat isosteric of adsorption oscillates between 6.340 to 0.235 kJ/g for moisture content of 0.06 to 0.15 g/g m.s. for the variety grain Oscar Blanco, for variety Noel Vietmeyer oscillates between 2.556 to 0.518 kJ/g for moisture of 0.04 to 0.12 g/g m.s., and for grain CICA of 4.645 to 0.176 kJ/g for moisture of 0.06 to 0.14 g/g m.s, as for the flour of the variety Oscar Blanco is between 32.028 to 1.99 kJ/g for moisture content of 0.05 to 0.12 g /g m.s, and for variety Noel Vietmeyer of 26.992 to 0.648 kJ/g for moisture of de 0.06 to 0.20 g/g m.s.

Downloads

Download data is not yet available.

References

[1] Higinio R. Elaboración de una mezcla instantánea de arroz (Oryza sativa), cañihua (Chenopodium pallidicaule Aellen) y kiwicha (Amaranthuscaudatus) por el método de cocción extrusión. (Tesis de grado) Lima, Perú: UNAC; 2011.

[2] Chipana M, Stuva C. Kiwicha producto de exportación en el Perú. Articulo ministerio de la producción, Perú; 2005.

[3] Huamán N. Predicción de la actividad de agua utilizando el modelo matemático de G.A.B. en el proceso de deshidratación osmótica del capulí (Phisalisperuviana) (Tesis de maestría) Lima, Perú: UNALM; 2001.

[4] Moreira R, Chenlo F, Torres MD, Vallejo N. Thermodynamic analysis of experimental sorption isotherms of loquat and quince fruits. J Food Eng. 2008;88:514-21.

[5] Brennan JG. Manual del procesado de los alimentos. España: Edit. ACRIBIA; 2008.

[6] Orrego AC. Procesamiento de alimentos,1era edición. Colombia: Universidad Nacional de Colombia - Manizales; 2003.

[7] Li Y, Wang X, Jiang P, Li X. Sorption equilibrium moisture and isosteric heat of adsorption of chinese dried wheat noodles. Journal of Stored Products Research. 2016;67:19–27.

[8] Raji AO, Ojediran JO. Moisture sorption isotherms of two varieties of millet. Food Bioprod Process. 2011;89(3):178-84.

[9] Fellows P. Food Processing Technology - Principles and Practice. 2da edición. Edit. TJ International. England; 2000.[10] Blahovec J, Yanniotis S. Modified classification of sorption isotherms. J Food Eng. 2009;91(1):72-7.

[11] Yan Z, Sousa-Gallagher M, Oliveira F. Sorption isotherms and moisture sorption hysteresis of intermediate moisture content banana. J Food Eng. 2008;86(3):342-8.

[12] Tolaba MP, Peltzer M, Enríquez N, Pollio ML. Grain sorption equilibria of quinoa grains. J Food Eng. 2004;61(3):365-71.

[13] Lamharrar A, Idlimam A, Ethmare Kane CS, Jamali A, Abdenouri N, Kouhila M. Sorption isotherms and drying characteristics of Artemisia arborescens Leaves. Journal of Agronomy. 2007;6:488-98.

[14] Tsami E, Maroulis Z, Marinos KD, Saravacos G. heat of sorption of water in dried fruits. International Journal of Food Science and technology. 1990;25(3):141-5.

[15] Labuza TP, Kaanane A, Chen J. Effect of temperature on the moisture sorption isotherm and water activity shift of two dehydrated food. J. Food Sci. 1985;50(2):385-91.

[16] Soleimani M, Tabil L, Shahedi M, Emani S. Sorption isotherm of hibrid seed corn. The canadian society for engineering in agricultural, food, environmental, and biological systems CSBE. 2006.

[17] Toloaba MP, Peltzer M, Enriquez N, Pollio ML. Grain sorption equilibrium of quinoa grains. J. Food Eng. 2004;61(3):365-371.

[18] Heldman D, Lund D. Handbook of food engineering. 2da edic. United States: CRC Press; 2007.

[19] Shafiur R. Manual de conservación de los alimentos. Editorial ACRIBIA – España; 2003.

[20] Viades T. Adsorción de agua en alimentos. Isoterma de adsorción de Guggenheim, Anderson y de Boer (GAB). Seminario de Investigación: Fenómenos de superficie, Postgrado en Ciencias Químicas, UNAM México; 2008.

[21] Chasquibol S, Delmas R, Rivera C, Lengua C, Aguirre M, Bazán G, Becerra V, et al.Contribución a la normalización de productos tradicionales andinos: Maca, Kiwicha, Cañihua, Mashua. (Tesis de grado), Lima, Perú: UNMSM; 1999.

[22] Choque D, Llalla C, Solano AM, Ligarda CA. Modelamiento matemático de las isotermas de adsorción de la quinua (Chenopodium quinoa) variedad blanco de Junín (Tesis de grado), Cusco, Perú: UNSAAC; 2010.

[23] Choque D. Evaluación de las isotermas de adsorción del maíz morado. (Tesis de maestría), Cusco, Perú: UNSAAC; 2009.

[24] Brett B, Figueroa M, Sandoval AJ, Barreiro JA, Müller AJ. Moisture Sorption characteristics of starchy products: oat flour and rice flour. Food Biophys. 2009;4(3):151-7.

[25] Alvarado J, Aguilera JM. Métodos para medir las propiedades físicas en la industria de los alimentos. España: Editorial Acribia S.A.; 2001.

[26] Bell LN, Labuza TP. Moisture sorption. Practical aspects of isotherm measurement and use. 2nd Edition. United States: American Association of Cereal Chemists; 2000.

[27] García L, Kobylansky J, Pilosof A. Modelling water sorption in okara soy milk. Drying Technology. 2000;18(9):2091–103.

[28] Prieto F, Gordillo A, Prieto J, Gómez C, Román A. Evaluación de las isotermas de sorción en cereales para desayuno. México: Sociedad Mexicana de Ciencia y Tecnología de Superficies y Materiales; 2006.

[29] Zug J. Fisicoquímica Especial. Isoterma de sorción de tres etapas y modelos de sorción restringida. Argentina: Fac. Ing. UBA; 2002.

[30] Chen C. Obtaining the isosteric sorption heat directly by sorption isotherm equations. J. Food Eng. 2006;74(2):178–85.

[31] Resende O, Correa CP, Gonell LD, Ribeiro MD. Isotermas e Calor Isostérico de sorção do feijão. Food Science and Technology. 2006;26(3):626-31.

[32] Gabas AL. Secagem de uva Itália em leito fixo (Tese de mestrado). São Paulo, Brasil: Faculdade de Engenharia de Alimentos-Universidade de Campinas; 1998.

[33] Van Den Berg C, Bruin S. Water activity and its estimation in food systemas. In: Water Activity: Influence on food quality. Rockland LB, Steward F (Eds.). United States: Academic Press; 1981.

[34] Kaya S, Kahyaoglu T. Thermodynamic properties and sorption equilibrium of pestil (grape leather). J Food Eng. 2005;71:200-7.

[35] Raji AO, Ojediran JO. Isotermas de sorción de humedad de dos variedades de mijo. Proceso de bioprod de alimentos. 2011;89(3):178-84.

[36] Blahovec J, Yanniotis S. Clasificación modificada de las isotermas de sorción. J Food Eng. 2009;91(1):72-7.

[37] Oswin CR. La cinética de la vida del paquete III. Isoterma. J Soc Chem Ind. 1946;65(12):419-21.

[38] Sopade PA, Ajisegiri ES. Moisture sorption study on Nigerian foods: maize and sorghum. Journal of Food Process Engineering. 1994;17(1):33-56.

[39] Galvez A, Aravena E, Mondaca R. Isotermas de adsorción en harina de maíz (Zea mays L.). Food Science and Technology. 2006;26(4):821-7.

[40] Chirife, J., Iglesias, H. A. Equations for fitting water sorption isotherm of foods: Part I: a review. Journal of Food Technology. 1978;13:159-74.

[41] Andrade RR, Lemus RM, Pérez CE. Models of sorption isotherms for food: uses and limitations. Vitae. 2011;18(3):325-34.

[42] Chung DS, Lee CH. Adsorption and desorption of water vapor by cereal grain and their products. Part II: Development of the general isotherm equation. Transaction of the ASAE. 1985;10:552-5.

[43] Torrealba MA. Determination of green/unripe plantain pre-cooked flour humidity sortion isoyherms (Musa paradisiaca L.). Revista AGROLLANIA. 2007;4:9-22.

[44] Pumacahua-Ramos A, Limaylla-Guerrero, KM, Telis-Romero J, Lopes JF. Water adsorption isotherms and isosteric heat of quinoa starch. Biotecnología en el sector agropecuario y agroindustrial. 2017;15(1):95-104.

[45] Tsami E. Heat of sorption of water in dried fruits. International Journal of Food Science and Technology. 1991;25(3):350–9.

[46] Polachini TC, Betiol LFL, Lopes-Filho JF, Telis-Romero J. Water adsorption isotherms and thermodynamic properties of cassava bagasse. Thermochimica Acta. 2016;632:79-85.

[47] Zapata JE, Quintero OA, Porras LD. Isotermas de sorción para avena (Avena sativa) en grano. Rev. Agron. 2015;23(1):82-92.

[48] Samapundo S, Devliegher F, De Meule-NAer B, Atakwase A, Lamboni Y, Debevere JM. Sortion isotherms and isosteric heats of sorption of whole yellow dent corn. J Food Eng. 2007;76:168-75.

[49] Al-Muhtaseb AH, McMinn W, Magge TRA.Water sorption isotherm of starch powders Part 1: Mathematical description of experimental data. J Food Eng. 2004;61:297-307.

[50] Arthur E, Tuller M, Moldrup P, De Jongel LW. Evaluation of theoretical and empirical water vapor sorption isotherm models for soils, Water Resour. Res. 2016;52:190–205.