Degradation of sulfide from leather tanning wastewater by hydrodynamic cavitation
Published 2019-08-30
Keywords
- Advanced oxidation,
- hydrodynamic cavitation,
- liming wastewater,
- sulfur,
- tannery.
How to Cite
Abstract
Sulfide present in the wastewater from industrial tanneries is resulting from unhairing (depilated of the skin) in concentrations that affects significantly the water system due to its toxicity, producing the mortality of flora and fauna, responsible for the presence of unpleasant odors in the riverbed and decreasing the dissolve oxygen in the water of the receiver stream. In the present research, removal of sulfide is evaluated using hydrodynamic cavitation (HC). An advanced technology is analyzed by different parameters as initial pH solution and inlet pressure, set in two prototypes established for a reaction time of 90 minutes. Design parameters as number and diameter of holes in the constriction are estimated according on the degradation extent with the objective of knowing best reactor characteristics for wastewater treatment applying this technique. A maximum extent of sulfide oxidation of 32.6% was reached without using any further reagents; cost – benefit analysis had been discussed in the present investigation due to the enhance of cavitation hydrodynamic reached compared with the energy required by the reactor observing a shortfall of 198% related with the conventional treatment, HC was found as a sustainable technology for tannery industries.
Downloads
References
[2] Di Iaconi C, Lopez A, Ramadori R, Di Pinto AC, Passino R. Combined chemical and biological degradation of tannery wastewater by a periodic submerged filter (SBBR). Water res. 2002;36(9):2205-14.
[3] Elsheikh MAS. Tannery wastewater pre-treatment. Water Sci. Technol. 2009;60(2):433-40.
[4] Schrank SG, José HJ, Moreira RFPM, Schröder HF. Applicability of Fenton and H2O2/UV reactions in the treatment of tannery wastewaters. Chemosphere. 2005;60(5):644–55.
[5] Ganesh R, Balaji G, Ramanujam RA. Biodegradation of tannery wastewater using sequencing batch reactor—Respirometric assessment. Bioresour. Technol. 2006;97(15):1815–21.
[6] Organización Panamericana de la Salud and Ministerio de Salud. Lineamiento para la vigilancia sanitaria y ambiental del impacto de los olores ofensivos en la salud y calidad de vida de las comunidades expuestas en áreas urbanas. Conv. Coop. técnica No.485/10, 2012, 160.
[7] Secretaría Distrial de Ambiente. Guía de producción más limpia para el sector curtiembres de Bogotá. Enfoque en vertimientos y residuos. Bogotá D.C., Colombia: Secretaría Distrial de Ambiente; 2017.
[8] Artuz LA, Martínez MS, Morales CJ. Las industrias curtiembres y su incidencia en la contaminación del río Bogotá. Isocuanta. 2011;1(1):43-53.
[9] Martínez S, Romero J. Revisión del estado actual de la industria de las curtiembres en sus procesos y productos: un análisis de su competitividad. Rev. Fac. Cienc. Econ. 2018;26(1):113-124.
[10] Fischer G, Miranda D, Carrarnza C, Rojas C, Jerez C, Zurita J. Accumulation of heavy metals in soil and plants of four vegetable crops irrigated with water of Bogotá river. Rev. Colomb. Cienc. Hortícolas. 2008;2(2):180-91.
[11] Salas G. Eliminación de sulfuros por oxidación en el tratamiento del agua residual de una curtiembre. Rev. Peru. Química Ing. Química. 2005;8(1):49–54.
[12] Olcay Tünay, Isik Kabdasli, Idil Arslan-Alaton, and Tugba Ölmez-Hanci, Chapter 3: Leather tanning industry, First Edit.). London, 2010.
[13] Ministerio de Ambiente, Vivienda y Desarrollo Territorial. Guia Ambiental para la Industria del Curtido y Preparado de Cueros. Bogotá D.C., Colombia: El Ministerio; 2006.
[14] Yu MH, Tsunoda H. Environmental toxicology: biological and health effects of pollutants. crc press; 2004.
[15] Cadena F, Peters RW. Evaluation of chemical ozidizers for hydrogen sulfide control. Water Pollut. Control Fed. 1988;60(7):1259-63.
[16] Díaz-martínez JA, Granada-torres CA. Efecto de las actividades antrópicas sobre las características fisicoquímicas y microbiológicas del río Bogotá a lo largo del municipio de Villapinzón , Colombia. Rev. Fac. Med. 2018;66(1):45–52.
[17] Corporación Autónoma Regional de Cundinamarca - CAR, Acuerdo 16 de 1998, 16). COLOMBIA: OBSERVATORIO AMBIENTAL CAR, 1998, 38.
[18] Bagal MV, Gogate PR. Degradation of diclofenac sodium using combined processes based on hydrodynamic cavitation and heterogeneous photocatalysis. Ultrason. Sonochem. 2014;21(3):1035-43.
[19] Wang X, Zhang Y. Degradation of alachlor in aqueous solution by using hydrodynamic cavitation. J. Hazard. Mater. 2009;161(1):202-7.
[20] Patil PN, Gogate PR. Degradation of methyl parathion using hydrodynamic cavitation: Effect of operating parameters and intensification using additives. Sep. Purif. Technol. 2012;95:172-9.
[21] Parsons S. Advanced Oxidation Processes for Water and Wastewater Treatment. London: IWA; 2015.
[22] Wang X, Jia J, Wang Y. Combination of photocatalysis with hydrodynamic cavitation for degradation of tetracycline. Chem. Eng. J. 2017;315:274-82.
[23] Shah YT, Pandit AB, Moholkar VS. Cavitation Reaction Engineering. New York: Dan Luss series; 1999.
[24] Padoley KV, Saharan VK, Mudliar SN, Pandey RA, Pandit AB. Cavitationally induced biodegradability enhancement of a distillery wastewater. J. Hazard. Mater. 2012;219:69–74.
[25] Flint EB, Suslick KS. The temperature of cavitation. Science. 1991;253(5026):1397-9.
[26] Saharan VK, Badve MP, Pandit AB. Degradation of Reactive Red 120 dye using hydrodynamic cavitation. Chem. Eng. J. 2011;178:100-7.
[27] Chakinala AG, Bremner DH, Gogate PR, Namkung KC, Burgess AE. Multivariate analysis of phenol mineralisation by combined hydrodynamic cavitation and heterogeneous advanced Fenton processing. Appl. Catal. B Environ. 2008;78(1–2):11-8.
[28] Gogate PR, Bhosale GS. Comparison of effectiveness of acoustic and hydrodynamic cavitation in combined treatment schemes for degradation of dye wastewaters. Chem. Eng. Process. Process Intensif. 2013;71:59–69.
[29] Badve M, Gogate P, Pandit A, Csoka L. Hydrodynamic cavitation as a novel approach for wastewater treatment in wood finishing industry. Sep. Purif. Technol. 2013;106:15–21.
[30] Franke M, Braeutigam P, Wu ZL, Ren Y, Ondruschka B. Enhancement of chloroform degradation by the combination of hydrodynamic and acoustic cavitation. Ultrason. Sonochem. 2011;18(4):888-94.
[31] Ozonek J. Application of Hydrodynamic Cavitation in Environmental Engineering. CRC Press; 2012.
[32] Gogate PR, Kabadi AM. A review of applications of cavitation in biochemical engineering/biotechnology. Biochem. Eng. J. 2009;44(1):60–72.
[33] Balasundaram B, Harrison STL. Optimising orifice geometry for selective release of periplasmic products during cell disruption by hydrodynamic cavitation. Biochem. Eng. J. 2011;54(3):207-9.
[34] Amin LP, Gogate PR, Burgess AE, Bremner DH. Optimization of a hydrodynamic cavitation reactor using salicylic acid dosimetry. Chem. Eng. J. 2010;156(1):165-9.
[35] Bis M, Montusiewicz A, Ozonek J, Pasieczna-Patkowska S. Application of hydrodynamic cavitation to improve the biodegradability of mature landfill leachate. Ultrasonics sonochemistry. 2015;26:378-87.
[36] Clesceri LS, Rice EW, Baird RB, Eaton AD. Standard Methods for the Examination of Water and Wastewater. 22 ed. American Public Health Association, American Water Works Association, Water Environment Federation; 2012.
[37] Sivakumar M, Pandit AB. Wastewater treatment: A novel energy efficient hydrodynamic cavitational technique. Ultrason. Sonochem. 2002;9(3):123-31.
[38] Garcia B, Takarada T. Ca ion-exchanged coal char as H 2 S sorbent. Fuel. 1999;78(5):573-81.
[39] Wang X, Wang J, Guo P, Guo W, Wang C. Degradation of rhodamine B in aqueous solution by using swirling jet-induced cavitation combined with H2O2. J. Hazard. Mater. 2009;169(1–3):486-91.
[40] Thanekar P, Panda M, Gogate PR. Degradation of carbamazepine using hydrodynamic cavitation combined with advanced oxidation processes. Ultrason. Sonochem. 2018;40(June 2017):567-76.
[41] Šarc A, Stepišnik-perdih T, Petkovšek M. The issue of cavitation number value in studies of water treatment by hydrodynamic cavitation. Ultrason. Sonochem. 2017;34:51-9.
[42] Parsa JB, Zonouzian SAE. Optimization of a heterogeneous catalytic hydrodynamic cavitation reactor performance in decolorization of Rhodamine B: Application of scrap iron sheets. Ultrason. Sonochem. 2013;20(6):1442-9.
[43] Huang Y, Wu Y, Huang W, Yang F, Ren XE. Degradation of chitosan by hydrodynamic cavitation. Polym. Degrad. Stab. 2013;98(1):37–43.
[44] Parag R, Gogate and Aniruddha B, Pandit. Engineering design methods for cavitation reactors II: Hydrodynamic cavitation. AIChE J. 2000;46(8):1641–9.
[45] Barik AJ, Gogate PR. Degradation of 4-chloro 2-aminophenol using a novel combined process based on hydrodynamic cavitation, UV photolysis and ozone. Ultrason. Sonochem. 2016;30:70-8.
[46] Kirpalani DM, McQuinn KJ. Experimental quantification of cavitation yield revisited: Focus on high frequency ultrasound reactors. Ultrason. Sonochem. 2006;13(1):1–5.
[47] Salas G. Eliminación de sulfuros por oxidación en el tratamiento del agua residual de una curtiembre. Rev. Peru. Química Ing. Química. 2005;8(1):49–54.
[48] Gągol M, Przyjazny A, Boczkaj G. Wastewater treatment by means of advanced oxidation processes based on cavitation – A review. Chem. Eng. J. 2018;338(September 2017):599–627.
[49] Jyoti KK, Pandit AB. Effect of cavitation on chemical disinfection efficiency. Water Res. 2004;38(9):2248-57.