Vol. 32 No. 1 (2019): Revista ION
Articles

Saccharification of Orange Bagasse Pre-treated with Calcium Hydroxide using an enzymatic blend Diluted Hydrochloric Acid

Danielle Pires Nogueira
Federal University of Goias
Paula Rubia Ferreira Rosa
Federal University of São Carlos
Araceli Aparecida Seolatto
Federal University of Goias
Carlos Alberto Galeano Suarez
Federal University of Goias
Fernanda Ferreira Freitas
Federal University of Goias

Published 2019-09-03

Keywords

  • central composite design,
  • biomass,
  • enzymes.

How to Cite

Pires Nogueira, D., Ferreira Rosa, P. R., Aparecida Seolatto, A., Galeano Suarez, C. A., & Ferreira Freitas, F. (2019). Saccharification of Orange Bagasse Pre-treated with Calcium Hydroxide using an enzymatic blend Diluted Hydrochloric Acid. Revista ION, 32(1), 75–85. https://doi.org/10.18273/revion.v32n1-2019007

Abstract

Enzymatic and dilute acid processes were applied to study the orange bagasse hydrolysis. The moisture, ashes, lignin, cellulose, and hemicellulose contents, of the orange peels, were quantified. The xylanase and cellulase enzymes activities  were quantified, as well as their optimum pH and temperatures. The pre dried orange peel biomass was pre-treated with calcium hydroxide, at preestablished conditions. The hydrolysis followed a central composite factorial 2³ design. The cellulase activity was 28.05x10-6 FPU (Filter Paper Units)/m3, the optimum pH was 4.8 and the temperature was 60°C. The results for xylanase were an activity of 199.58x10-3 U/Kg, pH 5.2, and temperature 50°C. The acid hydrolysis TRS (total reducing sugars) values varied from (9.328±0.68 mg)*10-3 TRS per Kg of biomass to (30.15±0.31)*10-3 mg TRS per Kg biomass, the most significant factor was the temperature and the least the time. The enzymatic hydrolysis TRS values varied from (77.33±3.82)*10-3 mg TRS per Kg biomass to (99.66±0.62)*10-3 mg TRS per Kg biomass, the most significant factor was the concentration of cellulase and the least the xylanase concentration.

Downloads

Download data is not yet available.

References

[1] Ohm YK, Hwang KR, Kim C, Kim JR, Lee JS. Recent developments and key barriers to advanced biofuels: A short review. Bioresour. Technol. 2018;257:320-33.

[2] Acker RV, Leplé JC, Aerts D, Storm V, Goeminne, G, Ivens B, et al. Improved saccharification and ethanol yield from field grown transgenic poplar deficient in cinnamoyl-CoA reductase. PNAS. 2014;111(2):845-50.

[3] Canizo JR, Cortes-Callejas ML, Davila-Gomez FJ, Heredia-Olea E, Perez-Carrilloa E, Serna-Saldívar SO. Release of potentially fermentable sugars during dilute acid treatments of bermuda grass NK37 (Cynodon dactylon) for second-generation ethanol production. J. Chem.Technol. Biotechnol. 2014;89:1941-47.

[4] Guo M, Song W, Buhain J. Bioenergy and biofuels: History, status and perspectives. Renew. Sust. Energ. Rev. 2015;42:712-25.

[5] Kosinkova J, Doshi A, Maire J, Ristovski Z, Brown R, Rainey TJ. Measuring the regional availability of biomass for biofuels and the potential for microalgae. Renew. Sust. Energ. Rev. 2015;49:1271-85.

[6] Cotana F, Cavalaglio G, Gelosia M, Nicolini A, Coccia V, Petrozzi A. Production of bioethanol in a second generation prototype from pinewood chips. Energ. Proc. 2014;45:42-51.

[7] Silva CEF, Gois GNSB, da Silva LMO, Almeida RMRG, Abud AKS. Citric waste saccharification under different chemical treatments. Acta Sci. Technol. 2015;37(4):387-95.

[8] Kumar CSC, Mythily R, Chandraju S. Extraction of carbohydrate from sweet orange peels (Citrus sinensis L.) and their identification via LC/MS & thin layer chromatographic analysis. Biosci. Biotech. Res. Asia. 2011;8(2):709-15.

[9] Silva KA, Godoy PHM, Cardoso J, Mendes TPP, Seolatto AA, Freitas FF. Study of orange bagasse digestibility by chemical pretreatments. Chem. Eng. Trans. 2013;35:1045-50.

[10] Souza CB, Jonathan M, Saad SMI, Schols HA, Venema K. Characterization and in vitro digestibility of by-products from Brazilian food industry: Cassava bagasse, orange bagasse and passion fruit peel. Bioact. Carbohydr. Dietary Fibre. 2018;16:90-9.

[11] Pandiyan, K, Singh, A, Saxena, A. K, Nain, L. Technological interventions for utilization of crop residues and weedy biomass fors second generation bio-ethanol production. Renew. Energy. 2019;132:723-41.

[12] Akhtar N, Gupta K, Goyal D, Goyal A. Recent advances in pretreatment technologies for efficient hydrolysis of lignocellulosic biomass. Environ. Prog.Sustain. Energy. 2016;35:489-511.

[13] Kim JS, Lee YY, Kim TH. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour. Technol. 2016;199:42-8.

[14] Chang M, Li D, Wang W, Chen D, Zhang Y, Hu H, Ye X. Comparison of sodium hydroxide and calcium hydroxide pretreatments on the enzymatic hydrolysis and lignin recovery of sugarcane bagasse. Bioresour. Technol. 2017;244:1055–58.

[15] Dussán KJ, Silva DDV, Moraes EJC, Arruda PV, Felipe MGA. Dilute-acid hydrolysis of cellulose to glucose sugarcane bagasse. Chem. Eng. Trans. 2014;38:433-38.

[16] Lenihan P, Orozco A, O’Neill E, Ahmad MNM, Rooney DW, Walker GM. Dilute acid hydrolysis of lignocellulosic biomass. Chem. Eng. J. 2010;156:395-403.

[17] Robak K, Balcerek M. Review of Second Generation Bioethanol Production from Residual Biomass. Food Tech. & Biotech. 2018;56(2):174-87.

[18] Browning BL. Methods of wood chemistry. USA, New York: Wiley & sons; 1967.

[19] Padilha P, Medeiro M, Duarte V, Figueiredo E, Abreu P, Zenebon C. Métodos Químicos e Físicos para Análise de Alimentos. Digital. Brazil, São Paulo: Normas Analíticas do Instituto Adolfo Lutz; 2008.

[20] Rabelo Cândida S. Avaliação e otimização de pré-tratamentos e hidrólise enzimática do bagaço de cana-de-açúcar para a produção de etanol de segunda geração. (Masters Dissertation) Campinas, Brazil: Universidade Estadual de Campinas; 2010.

[21] Bura R, Chandra R, Saddler J. Influence of xylan on the enzymatic hydrolysis of steam-pretreated corn stover and hybrid poplar. Biotechnol. Progr. 2009;.25(2):315-22.

[22] Lin L, Yan R, Liu Y, Jiang W. In-depth investigation of enzymatic hydrolysis of biomass wastes based on three major components: Cellulose, hemicellulose and lignin. Bioresour. Technol. 2010;101:8217-23.

[23] Selig MJ, Knoshaug EP, Adney WS, Himmel ME, Decker SR. Synergistic enhancement of cellobiohydrolase performanceon pretreated corn stover by addition of xylanase and esterase activities. Bioresour. Technol. 2008;99:4997-5005.

[24] Xin D, Sun Z, Viikari L, Zhang J. Role of hemicellulases in production of fermentable sugars from corn stover. Industr. Crops Prod. 2015;74:209-17.

[25] Adney B, Baker J. Measurement of Cellulase Activities. Laboratory Analytical Procedure. Golden, USA: National Renewable energy Laboratory. 2008.

[26] Ghose TK, Bisaria VS. Measurement of hemicellulase activities part 1: Xylanases. Great Britain.Pure Appl. Chem.1987;59(12):1739-52.

[27] Box GEP, Hunter JS. Multi-factor experimental designs for exploring response surfaces. Ann. Math. Stat. 1987;28(1):195-241.

[28] Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959;31(3):426-28.[29] Retore M, Silva LP, Toledo GSP, Araújo IG. Efeito da fibra de coprodutos agroindustriais e sua avaliação nutricional para coelhos. Arq. Bras. Med. Vet. Zootec. 2010;62(5):1232-40.

[30] Rivas B, Torrado A, Torre P, Converti A, Domínguez JM. Submerged citric acid fermentation on orange peel autohydrolysate. J. Agric. Food. Chem. 2008;56:2380-7.

[31] Sathendra E R, Baskar G, Praveenkumar R, Gnansounou E. Bioethanol production from palm wood using Trichoderma reesei and Kluveromyces marxianus. Bioresource Tech. 2019;271:345-52.

[32] Baskar G, Selvakumari IAE, Aiswarya, R. Biodiesel production from castor oil using heterogeneous Ni doped ZnO nanocatalyst. Bioresour. Technol. 2018;250:793-8.

[33] Awan TAJ A. Orange Bagasse as Biomass for 2G-Ethanol Production. (Ph.D. Thesis) Campinas, Brazil: Universidade Estadual de Campinas; 2013.