Vol. 32 Núm. 1 (2019): Revista ION
Artículos

Sacarificación de bagazo de naranja pretratado con hidroxido de calcio usando un cóctel enzimático y acido diluido

Danielle Pires Nogueira
Federal University of Goias
Paula Rubia Ferreira Rosa
Federal University of São Carlos
Araceli Aparecida Seolatto
Federal University of Goias
Carlos Alberto Galeano Suarez
Federal University of Goias
Fernanda Ferreira Freitas
Federal University of Goias

Publicado 2019-09-03

Palabras clave

  • diseño compuesto central,
  • biomasa,
  • enzimas.

Cómo citar

Pires Nogueira, D., Ferreira Rosa, P. R., Aparecida Seolatto, A., Galeano Suarez, C. A., & Ferreira Freitas, F. (2019). Sacarificación de bagazo de naranja pretratado con hidroxido de calcio usando un cóctel enzimático y acido diluido. Revista ION, 32(1), 75–85. https://doi.org/10.18273/revion.v32n1-2019007

Resumen

La hidrólisis del bagazo de naranja fue realizada por medio de un proceso enzimático con celulasas y un processo químico con ácido diluido. Las cantidades de humedad, cenizas, lignina, celulosa y hemicelulosa fueron cuantificadas. La actividad de las enzimas fue determinada a temperatura y pH optimo. La biomasa fue pretratada con hidróxido de cálcio. Los experimentos de hidrólisis fueron realizados utilizando un diseño fatorial 2³ del tipo compuesto central. La actividad de la celulasa fue de 28,05∙10-6 FPU (Filter Paper Units)/m3, con un pH optimo de 4,8 y una temperatura de 60°C. Asimismo los resultados para la actividad de xilanasas obtenidos fueron de 199,58∙10-3 U/ Kg, a pH 5,2, y temperatura 50°C. Los valores de azúcares reductores totales ART de la hidrólisis ácida variaron de (9,328 ± 0,68)*10-3 Kg ART /Kg de biomasa a (30,15±0,31)∙10-3 Kg ART/ Kg de biomasa, presentando como factor mas significativo la temperatura y como menos significativo, el tiempo. Para el caso de la hidrólisis enzimática los valores de ART variaron de (77,33±3,82)∙10-3 Kg ART/ Kg de biomasa a (99,66±0,62)∙10-3 kg ART / Kg de biomasa, siendo el fator más significativo la concentración de celulasa y el menos significativo la concentración de xilanasa.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1] Ohm YK, Hwang KR, Kim C, Kim JR, Lee JS. Recent developments and key barriers to advanced biofuels: A short review. Bioresour. Technol. 2018;257:320-33.

[2] Acker RV, Leplé JC, Aerts D, Storm V, Goeminne, G, Ivens B, et al. Improved saccharification and ethanol yield from field grown transgenic poplar deficient in cinnamoyl-CoA reductase. PNAS. 2014;111(2):845-50.

[3] Canizo JR, Cortes-Callejas ML, Davila-Gomez FJ, Heredia-Olea E, Perez-Carrilloa E, Serna-Saldívar SO. Release of potentially fermentable sugars during dilute acid treatments of bermuda grass NK37 (Cynodon dactylon) for second-generation ethanol production. J. Chem.Technol. Biotechnol. 2014;89:1941-47.

[4] Guo M, Song W, Buhain J. Bioenergy and biofuels: History, status and perspectives. Renew. Sust. Energ. Rev. 2015;42:712-25.

[5] Kosinkova J, Doshi A, Maire J, Ristovski Z, Brown R, Rainey TJ. Measuring the regional availability of biomass for biofuels and the potential for microalgae. Renew. Sust. Energ. Rev. 2015;49:1271-85.

[6] Cotana F, Cavalaglio G, Gelosia M, Nicolini A, Coccia V, Petrozzi A. Production of bioethanol in a second generation prototype from pinewood chips. Energ. Proc. 2014;45:42-51.

[7] Silva CEF, Gois GNSB, da Silva LMO, Almeida RMRG, Abud AKS. Citric waste saccharification under different chemical treatments. Acta Sci. Technol. 2015;37(4):387-95.

[8] Kumar CSC, Mythily R, Chandraju S. Extraction of carbohydrate from sweet orange peels (Citrus sinensis L.) and their identification via LC/MS & thin layer chromatographic analysis. Biosci. Biotech. Res. Asia. 2011;8(2):709-15.

[9] Silva KA, Godoy PHM, Cardoso J, Mendes TPP, Seolatto AA, Freitas FF. Study of orange bagasse digestibility by chemical pretreatments. Chem. Eng. Trans. 2013;35:1045-50.

[10] Souza CB, Jonathan M, Saad SMI, Schols HA, Venema K. Characterization and in vitro digestibility of by-products from Brazilian food industry: Cassava bagasse, orange bagasse and passion fruit peel. Bioact. Carbohydr. Dietary Fibre. 2018;16:90-9.

[11] Pandiyan, K, Singh, A, Saxena, A. K, Nain, L. Technological interventions for utilization of crop residues and weedy biomass fors second generation bio-ethanol production. Renew. Energy. 2019;132:723-41.

[12] Akhtar N, Gupta K, Goyal D, Goyal A. Recent advances in pretreatment technologies for efficient hydrolysis of lignocellulosic biomass. Environ. Prog.Sustain. Energy. 2016;35:489-511.

[13] Kim JS, Lee YY, Kim TH. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour. Technol. 2016;199:42-8.

[14] Chang M, Li D, Wang W, Chen D, Zhang Y, Hu H, Ye X. Comparison of sodium hydroxide and calcium hydroxide pretreatments on the enzymatic hydrolysis and lignin recovery of sugarcane bagasse. Bioresour. Technol. 2017;244:1055–58.

[15] Dussán KJ, Silva DDV, Moraes EJC, Arruda PV, Felipe MGA. Dilute-acid hydrolysis of cellulose to glucose sugarcane bagasse. Chem. Eng. Trans. 2014;38:433-38.

[16] Lenihan P, Orozco A, O’Neill E, Ahmad MNM, Rooney DW, Walker GM. Dilute acid hydrolysis of lignocellulosic biomass. Chem. Eng. J. 2010;156:395-403.

[17] Robak K, Balcerek M. Review of Second Generation Bioethanol Production from Residual Biomass. Food Tech. & Biotech. 2018;56(2):174-87.

[18] Browning BL. Methods of wood chemistry. USA, New York: Wiley & sons; 1967.

[19] Padilha P, Medeiro M, Duarte V, Figueiredo E, Abreu P, Zenebon C. Métodos Químicos e Físicos para Análise de Alimentos. Digital. Brazil, São Paulo: Normas Analíticas do Instituto Adolfo Lutz; 2008.

[20] Rabelo Cândida S. Avaliação e otimização de pré-tratamentos e hidrólise enzimática do bagaço de cana-de-açúcar para a produção de etanol de segunda geração. (Masters Dissertation) Campinas, Brazil: Universidade Estadual de Campinas; 2010.

[21] Bura R, Chandra R, Saddler J. Influence of xylan on the enzymatic hydrolysis of steam-pretreated corn stover and hybrid poplar. Biotechnol. Progr. 2009;.25(2):315-22.

[22] Lin L, Yan R, Liu Y, Jiang W. In-depth investigation of enzymatic hydrolysis of biomass wastes based on three major components: Cellulose, hemicellulose and lignin. Bioresour. Technol. 2010;101:8217-23.

[23] Selig MJ, Knoshaug EP, Adney WS, Himmel ME, Decker SR. Synergistic enhancement of cellobiohydrolase performanceon pretreated corn stover by addition of xylanase and esterase activities. Bioresour. Technol. 2008;99:4997-5005.

[24] Xin D, Sun Z, Viikari L, Zhang J. Role of hemicellulases in production of fermentable sugars from corn stover. Industr. Crops Prod. 2015;74:209-17.

[25] Adney B, Baker J. Measurement of Cellulase Activities. Laboratory Analytical Procedure. Golden, USA: National Renewable energy Laboratory. 2008.

[26] Ghose TK, Bisaria VS. Measurement of hemicellulase activities part 1: Xylanases. Great Britain.Pure Appl. Chem.1987;59(12):1739-52.

[27] Box GEP, Hunter JS. Multi-factor experimental designs for exploring response surfaces. Ann. Math. Stat. 1987;28(1):195-241.

[28] Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959;31(3):426-28.[29] Retore M, Silva LP, Toledo GSP, Araújo IG. Efeito da fibra de coprodutos agroindustriais e sua avaliação nutricional para coelhos. Arq. Bras. Med. Vet. Zootec. 2010;62(5):1232-40.

[30] Rivas B, Torrado A, Torre P, Converti A, Domínguez JM. Submerged citric acid fermentation on orange peel autohydrolysate. J. Agric. Food. Chem. 2008;56:2380-7.

[31] Sathendra E R, Baskar G, Praveenkumar R, Gnansounou E. Bioethanol production from palm wood using Trichoderma reesei and Kluveromyces marxianus. Bioresource Tech. 2019;271:345-52.

[32] Baskar G, Selvakumari IAE, Aiswarya, R. Biodiesel production from castor oil using heterogeneous Ni doped ZnO nanocatalyst. Bioresour. Technol. 2018;250:793-8.

[33] Awan TAJ A. Orange Bagasse as Biomass for 2G-Ethanol Production. (Ph.D. Thesis) Campinas, Brazil: Universidade Estadual de Campinas; 2013.