v. 32 n. 1 (2019): Revista ION
Artigos

Sacarificação de bagaço de laranja pré-tratado com hidróxido de cálcio usando um coquetel enzimático e ácido clorídrico diluído

Danielle Pires Nogueira
Federal University of Goias
Paula Rubia Ferreira Rosa
Federal University of São Carlos
Araceli Aparecida Seolatto
Federal University of Goias
Carlos Alberto Galeano Suarez
Federal University of Goias
Fernanda Ferreira Freitas
Federal University of Goias

Publicado 2019-09-03

Palavras-chave

  • planejamento composto central,
  • biomassa,
  • enzimas.

Como Citar

Pires Nogueira, D., Ferreira Rosa, P. R., Aparecida Seolatto, A., Galeano Suarez, C. A., & Ferreira Freitas, F. (2019). Sacarificação de bagaço de laranja pré-tratado com hidróxido de cálcio usando um coquetel enzimático e ácido clorídrico diluído. REVISTA ION, 32(1), 75–85. https://doi.org/10.18273/revion.v32n1-2019007

Resumo

A hidrólise do bagaço de laranja foi estudada por processos enzimáticos e ácido diluído. Os teores de umidade, cinzas, lignina, celulose e hemicelulose foram quantificados. A atividade das enzimas foi quantificada, bem como a temperatura e o pH ótimos. A biomassa foi pré-tratada com hidróxido de cálcio. As hidrólises seguiram um planejamento fatorial 2³ do tipo composto central. A atividade da celulase foi 28,05∙10-6 FPU (Filter Paper Units)/m3, o pH ótimo foi 4,8 e a temperatura foi 60°C. Os resultados da xilanase foram atividade de 199,58∙10-3 U/Kg, pH 5,2, e temperatura 50°C. Os valores de açucares redutores totais (ART) da hidrólise ácida variaram de (9,328 ± 0,68)∙10-3 Kg ART por Kg de biomassa a (30,15±0,31)∙10-3 Kg ART por Kg biomassa, o fator mais significativo foi a temperatura e o menos significativo, o tempo. Os valores de ART da hidrólise enzimática variaram de (77,33±3,82)∙10-3 Kg ART por Kg biomassa a (99,66±0,62)∙10-3 kg ART por Kg biomassa, o fator mais significativo foi a concentração de celulase e o menos significativo a concentração de xilanase.

Downloads

Não há dados estatísticos.

Referências

[1] Ohm YK, Hwang KR, Kim C, Kim JR, Lee JS. Recent developments and key barriers to advanced biofuels: A short review. Bioresour. Technol. 2018;257:320-33.

[2] Acker RV, Leplé JC, Aerts D, Storm V, Goeminne, G, Ivens B, et al. Improved saccharification and ethanol yield from field grown transgenic poplar deficient in cinnamoyl-CoA reductase. PNAS. 2014;111(2):845-50.

[3] Canizo JR, Cortes-Callejas ML, Davila-Gomez FJ, Heredia-Olea E, Perez-Carrilloa E, Serna-Saldívar SO. Release of potentially fermentable sugars during dilute acid treatments of bermuda grass NK37 (Cynodon dactylon) for second-generation ethanol production. J. Chem.Technol. Biotechnol. 2014;89:1941-47.

[4] Guo M, Song W, Buhain J. Bioenergy and biofuels: History, status and perspectives. Renew. Sust. Energ. Rev. 2015;42:712-25.

[5] Kosinkova J, Doshi A, Maire J, Ristovski Z, Brown R, Rainey TJ. Measuring the regional availability of biomass for biofuels and the potential for microalgae. Renew. Sust. Energ. Rev. 2015;49:1271-85.

[6] Cotana F, Cavalaglio G, Gelosia M, Nicolini A, Coccia V, Petrozzi A. Production of bioethanol in a second generation prototype from pinewood chips. Energ. Proc. 2014;45:42-51.

[7] Silva CEF, Gois GNSB, da Silva LMO, Almeida RMRG, Abud AKS. Citric waste saccharification under different chemical treatments. Acta Sci. Technol. 2015;37(4):387-95.

[8] Kumar CSC, Mythily R, Chandraju S. Extraction of carbohydrate from sweet orange peels (Citrus sinensis L.) and their identification via LC/MS & thin layer chromatographic analysis. Biosci. Biotech. Res. Asia. 2011;8(2):709-15.

[9] Silva KA, Godoy PHM, Cardoso J, Mendes TPP, Seolatto AA, Freitas FF. Study of orange bagasse digestibility by chemical pretreatments. Chem. Eng. Trans. 2013;35:1045-50.

[10] Souza CB, Jonathan M, Saad SMI, Schols HA, Venema K. Characterization and in vitro digestibility of by-products from Brazilian food industry: Cassava bagasse, orange bagasse and passion fruit peel. Bioact. Carbohydr. Dietary Fibre. 2018;16:90-9.

[11] Pandiyan, K, Singh, A, Saxena, A. K, Nain, L. Technological interventions for utilization of crop residues and weedy biomass fors second generation bio-ethanol production. Renew. Energy. 2019;132:723-41.

[12] Akhtar N, Gupta K, Goyal D, Goyal A. Recent advances in pretreatment technologies for efficient hydrolysis of lignocellulosic biomass. Environ. Prog.Sustain. Energy. 2016;35:489-511.

[13] Kim JS, Lee YY, Kim TH. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour. Technol. 2016;199:42-8.

[14] Chang M, Li D, Wang W, Chen D, Zhang Y, Hu H, Ye X. Comparison of sodium hydroxide and calcium hydroxide pretreatments on the enzymatic hydrolysis and lignin recovery of sugarcane bagasse. Bioresour. Technol. 2017;244:1055–58.

[15] Dussán KJ, Silva DDV, Moraes EJC, Arruda PV, Felipe MGA. Dilute-acid hydrolysis of cellulose to glucose sugarcane bagasse. Chem. Eng. Trans. 2014;38:433-38.

[16] Lenihan P, Orozco A, O’Neill E, Ahmad MNM, Rooney DW, Walker GM. Dilute acid hydrolysis of lignocellulosic biomass. Chem. Eng. J. 2010;156:395-403.

[17] Robak K, Balcerek M. Review of Second Generation Bioethanol Production from Residual Biomass. Food Tech. & Biotech. 2018;56(2):174-87.

[18] Browning BL. Methods of wood chemistry. USA, New York: Wiley & sons; 1967.

[19] Padilha P, Medeiro M, Duarte V, Figueiredo E, Abreu P, Zenebon C. Métodos Químicos e Físicos para Análise de Alimentos. Digital. Brazil, São Paulo: Normas Analíticas do Instituto Adolfo Lutz; 2008.

[20] Rabelo Cândida S. Avaliação e otimização de pré-tratamentos e hidrólise enzimática do bagaço de cana-de-açúcar para a produção de etanol de segunda geração. (Masters Dissertation) Campinas, Brazil: Universidade Estadual de Campinas; 2010.

[21] Bura R, Chandra R, Saddler J. Influence of xylan on the enzymatic hydrolysis of steam-pretreated corn stover and hybrid poplar. Biotechnol. Progr. 2009;.25(2):315-22.

[22] Lin L, Yan R, Liu Y, Jiang W. In-depth investigation of enzymatic hydrolysis of biomass wastes based on three major components: Cellulose, hemicellulose and lignin. Bioresour. Technol. 2010;101:8217-23.

[23] Selig MJ, Knoshaug EP, Adney WS, Himmel ME, Decker SR. Synergistic enhancement of cellobiohydrolase performanceon pretreated corn stover by addition of xylanase and esterase activities. Bioresour. Technol. 2008;99:4997-5005.

[24] Xin D, Sun Z, Viikari L, Zhang J. Role of hemicellulases in production of fermentable sugars from corn stover. Industr. Crops Prod. 2015;74:209-17.

[25] Adney B, Baker J. Measurement of Cellulase Activities. Laboratory Analytical Procedure. Golden, USA: National Renewable energy Laboratory. 2008.

[26] Ghose TK, Bisaria VS. Measurement of hemicellulase activities part 1: Xylanases. Great Britain.Pure Appl. Chem.1987;59(12):1739-52.

[27] Box GEP, Hunter JS. Multi-factor experimental designs for exploring response surfaces. Ann. Math. Stat. 1987;28(1):195-241.

[28] Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959;31(3):426-28.[29] Retore M, Silva LP, Toledo GSP, Araújo IG. Efeito da fibra de coprodutos agroindustriais e sua avaliação nutricional para coelhos. Arq. Bras. Med. Vet. Zootec. 2010;62(5):1232-40.

[30] Rivas B, Torrado A, Torre P, Converti A, Domínguez JM. Submerged citric acid fermentation on orange peel autohydrolysate. J. Agric. Food. Chem. 2008;56:2380-7.

[31] Sathendra E R, Baskar G, Praveenkumar R, Gnansounou E. Bioethanol production from palm wood using Trichoderma reesei and Kluveromyces marxianus. Bioresource Tech. 2019;271:345-52.

[32] Baskar G, Selvakumari IAE, Aiswarya, R. Biodiesel production from castor oil using heterogeneous Ni doped ZnO nanocatalyst. Bioresour. Technol. 2018;250:793-8.

[33] Awan TAJ A. Orange Bagasse as Biomass for 2G-Ethanol Production. (Ph.D. Thesis) Campinas, Brazil: Universidade Estadual de Campinas; 2013.