Anomalías morfológicas en Tribolium castaneum herbst tratado con ocho compuestos tóxicos
Publicado 2024-05-06
Palabras clave
- Invertebrado,
- Efectos tóxicos,
- Ecotoxicología,
- Reproducción
Cómo citar
Derechos de autor 2024 Nerlis Paola Pájaro Castro, Karina Caballero-Gallardo, Jesus Olivero-Verbel
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Resumen
Las pruebas de toxicidad son esenciales para prevenir la contaminación química del medio ambiente. Tribolium castaneum se puede utilizar como modelo alternativo para la detección preliminar de toxicidad; se evaluaron ocho compuestos químicos con toxicidad conocida. Por ejemplo, el cloruro de mercurio II se considera tóxico a concentraciones superiores a 0,1 mg/L en agua potable, el fenol a concentraciones superiores a 5 mg/L en agua potable puede ser peligroso, para el caso del tolueno la exposición a concentraciones superiores a 200 ppm (partes por millón) en el aire puede ser perjudicial para la salud, la hidrazina puede ser peligrosa a concentraciones superiores a 1 mg/L en agua potable, y la cafeína puede causar efectos adversos como nerviosismo, insomnio, taquicardia y temblores por exposición a dosis superiores a 500 - 600 mg en adultos. Los insectos adultos fueron alimentados con una dieta de avena complementada con cada tóxico por separado. Se evaluaron el número de crías, tamaño, peso y anormalidades morfológicas. De los ocho compuestos químicos evaluados, sólo cinco tuvieron un efecto visible sobre el desarrollo de los insectos: el BPA (bisfenol A) y el cloruro de mercurio (II) indujeron anomalías en los estadios larvarios y pupales, mientras que el fenol, el tolueno y el metronidazol sólo en el estadio pupal. Se observaron anomalías importantes: necrosis en los apéndices de las larvas, en las pupas, papilas para la diferenciación de sexos escleróticas o ausentes y anomalias en la formación de la cabeza, extremidades, alas y apéndices. El cloruro de mercurio (II) fue el más tóxico debido a que afectó el crecimiento, desarrollo y reproducción del insecto.
Descargas
Referencias
- Mesnage R, Benbrook C. Use of the concept ‘environmentally relevant level’ in linking the results of pesticide toxicity studies to public health outcomes. All Life. 2023;16(1):2167872. doi.org/10.1080/26895293.2023.2167872
- Hartung T. From alternative methods to a new toxicology. European Journal of Pharmaceutics and Biopharmaceutics. 2011;77(3):338-349. doi.org/10.1016/j.ejpb.2010.12.027
- Vinardell Martínez-Hidalgo MP. Alternativas a la experimentación animal en toxicología: situación actual. Acta bioethica. 2007;13(1):41-52. doi.org/10.4067/S1726-569X2007000100005
- Patwardhan V, Ghaskadbi S (2013) Invertebrate Alternatives for Toxicity Testing: Hydra Stakes its Claim. http://www.altex.ch/resources/rISC_009_Patwardhan1.pdf. Accessed Nov, 20 2015
- Mäenpää KA. The toxicity of xenobiotics in an aquatic environment: connecting body residues with adverse effects (dissertation). Joensuu, Finland; University of Joensuu; 2007.
- Piersma AH. Alternative Methods for Developmental Toxicity Testing. Basic & Clinical Pharmacology & Toxicology. 2006;98(5):427-431. doi.org/10.1111/j.1742-7843.2006.pto_373.x
- Guilhermino L, Diamantino T, Carolina Silva M, Soares AMVM. Acute Toxicity Test with Daphnia magna: An Alternative to Mammals in the Prescreening of Chemical Toxicity? Ecotoxicology and Environmental Safety. 2000;46:357-362. doi.org/10.1006/eesa.2000.1916
- Pajaro-Castro N, Caballero-Gallardo K, Olivero-Verbel J. Toxicity of Naphthalene and Benzene on Tribollium castaneum Herbst. Int. J. Environ. Res. Public Health. 2017;14(6):667. doi.org/10.3390/ijerph14060667
- Doke SK, Dhawale SC. Alternatives to animal testing: A review. Saudi Pharmaceutical Journal 2015;23(3):223-229. doi.org/10.1016/j.jsps.2013.11.002
- Ton S-S, Chang S-H, Hsu L-Y, Wang M-H, Wang K-S. Evaluation of acute toxicity and teratogenic effects of disinfectants by Daphnia magna embryo assay Environmental Pollution. 2012;168:54-61. doi.org/10.1016/j.envpol.2012.04.008
- Shan C, You X, Li L, Du X, Ren Y, Liu T. Toxicity of Ethyl Formate to Tribolium castaneum (Herbst) Exhibiting Different Levels of Phosphine Resistance and Its Influence on Metabolite Profiles. Agriculture 2024;14(2):323. doi.org/10.3390/agriculture14020323
- Caballero-Gallardo K, Olivero-Verbel J, Stashenko EE. Repellent Activity of Essential Oils and Some of Their Individual Constituents against Tribolium castaneum Herbst. J. Agric. Food Chem. 2011;59(5):1690-1696. doi.org/10.1021/jf103937p
- Caballero-Gallardo K, Pino-Benitez N, Pajaro-Castro N, Stashenko E, Olivero-Verbel J. Plants cultivated in Choco, Colombia, as source of repellents against Tribolium castaneum (Herbst). Journal of Asia-Pacific Entomology. 2014;17(4):753-759. doi.org/10.1016/j.aspen.2014.06.011
- Hernandez-Lambraño R, Pajaro-Castro N, Caballero-Gallardo K, Stashenko E, Olivero Verbel J. Essential oils from plants of the genus Cymbopogon as natural insecticides to control stored product pests Journal of Stored Products Research. 2015;62:81-83. doi.org/10.1016/j.jspr.2015.04.004
- Pajaro-Castro N, Caballero-Gallardo K, Olivero-Verbel J. Neurotoxic Effects of Linalool and β-Pinene on Tribolium castaneum Herbst. Molecules. 2017;22(12):2052. doi.org/10.3390/molecules22122052
- Merzendorfer H, Kim HS, Chaudhari SS, Kumari M, Specht CA, Butcher S, et al. Genomic and proteomic studies on the effects of the insect growth regulator diflubenzuron in the model beetle species Tribolium castaneum. Insect Biochemistry and Molecular Biology. 2012;42(4):264-276. doi.org/10.1016/j.ibmb.2011.12.008
- Yasir M, Sagheer M, Hasan M-u-, Abbas SK, Ahmad S, Ali Z. Growth, development and reproductive inhibition in the red flour beetle, Triboliumcastaneum (Herbst) (Coleoptera: Tenebrionidae) due to larval exposure to flufenoxuron-treated diet. Asian J Phar Biol Res. 2012;2(1):51-58.
- Shukla JN, Palli SR. Sex determination in beetles: Production of all male progeny by Parental RNAi knockdown of transformer. Scientific Reports. 2012;2:602. doi.org/10.1038/srep00602
- GoPubmed. Available in: https://web.archive.org/web/20090718141635/http://www.gopubmed.org//. Accessed Nov, 16 2019.
- PubGraph. Available in: https://pubgraph.isi.edu/ Accessed Nov, 16 2019.
- Helioblast. Available in: https://alternativeto.net/software/helioblast/about/ . Accessed Nov, 16 2019.
- Pubtator. Available in: https://www.ncbi.nlm.nih.gov/research/pubtator//. Accessed Nov, 16 2019.
- Lee S, Lee DK. What is the proper way to apply the multiple comparison test? Korean J Anesthesiol. 2018;71(5):353-360. doi.org/10.4097/kja.d.18.00242
- Mainail KP, Slud E, Singer MC, Fagan WF. A better index for analysis of co-occurrence and similarity. Sci. Adv. 2022;8(4):eabj9204. doi.org/10.1126/sciadv.abj9204
- Berger J. Preclinical testing on insects predicts human haematotoxic potentials. Lab Anim. 2009;43(4):328-332 doi.org/10.1258/la.2008.007162
- De la Fuente M, Folgar RM, Martínez-Paz P, Cortés E, Martínez-Guitarte JL, Morales M. Effect of environmental stressors on the mRNA expression of ecdysone cascade genes in Chironomus riparius. Environ Sci Pollut Res. 2022;29:10210–10221. doi.org/10.1007/s11356-021-16339-3
- Marcus SR, Fiumera AC. Atrazine exposure affects longevity, development time and body size in Drosophila melanogaster. Journal of Insect Physiology 2016;91:18-25. doi.org/10.1016/j.jinsphys.2016.06.006
- Peterson EK, Long HE. Experimental Protocol for Using Drosophila As an Invertebrate Model System for Toxicity Testing in the Laboratory. JoVE. 2018;137:e57450. doi.org/10.3791/57450
- Belden JB, Lydy MJ. Impact of atrazine on organophosphate insecticide toxicity. Environmental Toxicology and Chemistry. 2000;19:2266-2274. doi.org/10.1002/etc.5620190917
- Watts M, Pascoe DA. Comparative Study of Chironomus riparius Meigen and Chironomus tentans Fabricius (Diptera:Chironomidae) in Aquatic Toxicity Tests. Arch. Environ. Contam. Toxicol. 2020;39:299–306. doi.org/10.1007/s002440010108
- Grünwald S, Adam I, Gurmai A-M, Bauer L, Boll M, Wenzel U. The Red Flour Beetle Tribolium castaneum as a Model to Monitor Food Safety and Functionality. In: Vilcinskas A (ed) Yellow Biotechnology I. Advances in Biochemical Engineering/Biotechnology. vol 135. Germany: Springer, Berlin, Heidelberg; 2013. p. 111-122. doi.org/10.1007/10_2013_212
- Pajaro-Castro N, Caballero-Gallardo K, Olivero-Verbel J. Toxicity and expression of oxidative stress genes in Tribolium castaneum induced by toluene, xylene, and thinner. Journal of Toxicology and Environmental Health, Part A. 2019;82(1):28-36. doi.org/10.1080/15287394.2018.1546245
- OPA. Ocean Protection Council. Toxicological Profile for Bisphenol A. Available in: http://www.opc.ca.gov/webmaster/ftp/project_pages/MarineDebris_OEHHA_ToxProfiles/Bisphenol%20A%20Final.pdf. Accessed Nov, 26 2015
- Saili KS, Tilton SC, Waters KM, Tanguay RL. Global gene expression analysis reveals pathway differences between teratogenic and non-teratogenic exposure concentrations of bisphenol A and 17β-estradiol in embryonic zebrafish. Reproductive Toxicology 2013;38:89-101. doi.org/10.1016/j.reprotox.2013.03.009
- Iwamuro S, Sakakibara M, Terao M, Ozawa A, Kurobe C, Shigeura T, et al. Teratogenic and anti-metamorphic effects of bisphenol A on embryonic and larval Xenopus laevis. General and Comparative Endocrinology. 2003;133(2):189-198. doi.org/10.1016/S0016-6480(03)00188-6
- ATSDR. Agency for Toxic Substances and Disease Registry. TOXICOLOGICAL PROFILE FOR PHENOL. Available in: http://www.atsdr.cdc.gov/toxprofiles/tp115.pdf. Accessed Nov, 26 2015.
- Paisio CE, Agostini E, González PS, Bertuzzi ML. Lethal and teratogenic effects of phenol on Bufo arenarum embryos. Journal of Hazardous Materials 2009;167(1–3):64-68. doi.org/10.1016/j.jhazmat.2008.12.084
- Weir CB, Le JK. Metronidazole. In: StatPearls [Internet]. Treasure Island, Florida: StatPearls Publishing LLC. Available in: https://www.ncbi.nlm.nih.gov/books/NBK539728/ Accessed Nov, 26 2015.
- Tiboni GM, Marotta F, Castigliego AP. Teratogenic effects in mouse fetuses subjected to the concurrent in utero exposure to miconazole and metronidazole. Reproductive Toxicology. 2008;26(3–4):254-261. doi.org/10.1016/j.reprotox.2008.09.005
- Singh MP, Ravi Ram K, Mishra M, Shrivastava M, Saxena DK, Chowdhuri DK. (Effects of co-exposure of benzene, toluene and xylene to Drosophila melanogaster: Alteration in hsp70, hsp60, hsp83, hsp26, ROS generation and oxidative stress markers. Chemosphere. 2010;79(5):577-587. doi.org/10.1016/j.chemosphere.2010.01.054
- International Programme on Chemical Safety, World Health Organization & WHO Task Group. Environmental Health Criteria for Toluene. World Health Organization; 1985. Available in: https://iris.who.int/handle/10665/41688 Accessed Nov, 25 2021
- Boening DW. Ecological effects, transport, and fate of mercury: a general review Chemosphere 2000;40(12):1335-1351. doi.org/10.1016/S0045-6535(99)00283-0
- Ellis P, Kenyon M, Dobo K. Determination of compound-specific acceptable daily intakes for 11 mutagenic carcinogens used in pharmaceutical synthesis. Regulatory Toxicology and Pharmacology. 2013;65(2):201-213. doi.org/10.1016/j.yrtph.2012.11.008
- IARC. Provisional Peer-Reviewed Toxicity Values for Hydroquinone. Available in: https://cfpub.epa.gov/ncea/pprtv/documents/Hydroquinone.pdf. Accessed Oct, 25 2023.
- Nishi Y, Sasaki K, Miyatake T. Biogenic amines, caffeine and tonic immobility in Tribolium castaneum. Journal of Insect Physiology. 2010;56:622-628 doi.org/10.1016/j.jinsphys.2010.01.002
- Bernice M, James R. Evaluation of Developmental Toxicity of Interaction between Caffeine and Pseudoephedrine Using Frog Embryo Teratogenesis Assay-Xenopus (Fetax). Bios. 2007;78(1):1-9.
- Palenske NM. Effects of triclosan, triclocarban, and caffeine exposure on the development of amphibian larvae (dissertation). Denton, EEUU: University of North Texas; 2009.
- WHO. Toluene. Available in: http://www.euro.who.int/__data/assets/pdf_file/0020/123068/AQG2ndEd_5_14Toluene.PDF. Accessed Nov, 25 2015.