Vol. 37 Núm. 2 (2024): Revista ION
Artículos

Soportes orgánicos: ¿Una alternativa de bajo costo para mejorar el proceso de digestión anaeróbica?

María Paula Garay Jácome
Universidad Industrial de Santander
Rosaura Angelica Parra Suárez
Universidad Industrial de Santander
Jaime Jaimes Estévez
Universidad Industrial de Santander
Liliana del Pilar Castro Molano
Universidad Industrial de Santander
Humberto Escalante Hernández
Universidad Industrial de Santander

Publicado 2024-08-08

Palabras clave

  • Digestión Anaeróbica,
  • Biopelícula,
  • Soportes orgánicos,
  • Soportes inorgánicos,
  • Residuos orgánicos,
  • Psicrofilia,
  • Biocarbón,
  • Microorganismos anaeróbicos,
  • Producción de biogás,
  • Valorización de residuos,
  • Metanogénesis,
  • Rendimiento de metano
  • ...Más
    Menos

Cómo citar

Garay Jácome, M. P., Parra Suárez, R. A., Jaimes Estévez, J. ., Castro Molano , L. del P. ., & Escalante Hernández, H. . (2024). Soportes orgánicos: ¿Una alternativa de bajo costo para mejorar el proceso de digestión anaeróbica?. Revista ION, 37(2), 7–24. https://doi.org/10.18273/revion.v37n2-2024001

Resumen

Los soportes orgánicos en la Digestión Anaeróbica promueven la adherencia de los microorganismos en la superficie de estos medios y a su vez, mejoran la producción de biogás; sin embargo, la información reportada en la literatura es limitada. Este artículo es una compilación de investigaciones enfocadas al uso de soportes orgánicos en el proceso anaeróbico publicadas en los últimos 18 años; destacando los desafíos que se presentan durante la biodegradación anaerobia y las limitaciones de los enfoques convencionales. Esta revisión bibliográfica se enfocó en la influencia de los soportes orgánicos sobre la microbiología y bioquímica del proceso anaeróbico. Se presentan las actuales tendencias del uso de soportes orgánicos y sus ventajas en la eficiencia y calidad del biogás.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Escalante H, Lesmes HJZ, Camacho CS, Rubiano LDY, Ruiz MCC, Ortega MD. Atlas del potencial energético de la biomasa en Colombia. Colombia: Unidad de Planeación Minero Energética (UPME); Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM); Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS); Universidad Industrial de Santander; 2010. Available from: https://repositoriobi.minenergia.gov.co/handle/123456789/2413
  2. Fundación Promigas. Índice Multidimensional de Pobreza Energética. 2022 [cited 2024 Jun 22]. Pobreza energética en el IMPE. Available from: https://fundacionpromigas.org.co/impe/
  3. Fan Y Van, Klemeš JJ, Lee CT, Perry S. Anaerobic digestion of municipal solid waste: Energy and carbon emission footprint. J Environ Manage. 2018;223:888–97. https://doi.org/10.1016/j.jenvman.2018.07.005
  4. Martí Herrero J. Biodigestores Tubulares: Guía de Diseño y Manual de Instalación. Ecuador: Redbiolac; 2019.
  5. Jaimes-Estévez J, Castro L, Sanabria K, Rondón Z, Escalante H. Metodología para la producción de biogás sin riesgos de inhibición en laboratorio codigestión de lactosuero y estiércol bovino. RedBioLAC. 2020;4:101–8.
  6. Lettinga G, Rebac S, Zeeman G. Challenge of psychrophilic anaerobic wastewater treatment. Trends Biotechnol. 2001;19(9):363–70. https://doi.org/10.1016/S0167-7799(01)01701-2
  7. Mshandete A, Björnsson L, Kivaisi AK. Performance of biofilm carriers in anaerobic digestion of sisal leaf waste leachate. Electron. J. Biotechnol. 2007;10(4):582–91.
  8. Wahab MA, Habouzit F, Bernet N, Steyer JP, Jedidi N, Escudié R. Sequential operation of a hybrid anaerobic reactor using a lignocellulosic biomass as biofilm support. Bioresour Technol. 2014;172:150–5. http://dx.doi.org/10.1016/j.biortech.2014.08.127
  9. Liu Y, Zhu Y, Jia H, Yong X, Zhang L, Zhou J, et al. Effects of different biofilm carriers on biogas production during anaerobic digestion of corn straw. Bioresour Technol. 2017;244(30):445–51. https://doi.org/10.1016/j.biortech.2017.07.171
  10. Jang HM, Choi YK, Kan E. Effects of dairy manure-derived biochar on psychrophilic, mesophilic and thermophilic anaerobic digestions of dairy manure. Bioresour Technol [Internet]. 2018;250:927–31. Available from: https://doi.org/10.1016/j.biortech.2017.11.074
  11. MinAmbiente. Ministerio de Ambiente y Desarrollo Sostenible. 2022 [cited 2024 Jun 22]. Hoy no se habla de basura, sino de residuos que son insumos para productos: Minambiente. Available from: https://www.
  12. minambiente.gov.co/hoy-no-se-habla-debasura-sino-de-residuos-que-son-insumospara-productos-minambiente/
  13. Prades M, Gallardo A, Ibàñez MV. Factors determining waste generation in Spanish towns and cities. Environ Monit Assess. 2015;187:4098. https://doi.org/10.1007/s10661-014-4098-6
  14. Arif S, Liaquat R, Adil M. Applications of materials as additives in anaerobic digestion technology. Renewable and Sustainable Energy Reviews. 2018;97:354–66. https://doi.org/10.1016/j.rser.2018.08.039
  15. Garcia ML, Lapa KR, Foresti E, Zaiat M. Effects of bed materials on the performance of an anaerobic sequencing batch biofilm reactor treating domestic sewage. J Environ Manage. 2008;88(4):1471–7. https://doi.org/10.1016/j.jenvman.2007.07.015
  16. Fia FRL, de Matos AT, Borges AC, Moreira DA, Fia R, Eustáquio V. Removal of the phenolic compounds in fixed bed anaerobic reactors with different support material. Rev. Bras. Eng. Agríc. Ambient. 2010;14(10):1079-86. https://doi.org/10.1590/S1415-43662010001000009
  17. Kassuwi SAA, Mshandete AM, Kivaisi AK. Nile perch fish scales a novel biofilm carrier in the anaerobic digestion of biological pre-treated Nile perch fish solid waste. ARPN Journal of Engineering and Applied Sciences. 2013;8(2):117–27.
  18. Pérez-Pérez T, Correia GT, Kwong WH, Pereda-Reyes I, Oliva-Merencio D, Zaiat M. Effects of the support material addition on the hydrodynamic behavior of an anaerobic expanded granular sludge bed reactor. J Environ Sci. 2017;54:224–30. https://doi.org/10.1016/j.jes.2016.02.011
  19. Bertin L, Lampis S, Todaro D, Scoma A, Vallini G, Marchetti L, et al. Anaerobic acidogenic digestion of olive mill wastewaters in biofilm reactors packed with ceramic filters or granular activated carbon. Water Res. 2010;44(15):4537–49. http://dx.doi.org/10.1016/j.watres.2010.06.025
  20. Chen S, Rotaru AE, Shrestha PM, Malvankar NS, Liu F, Fan W, et al. Promoting interspecies electron transfer with biochar. Sci Rep. 2014;4:5019. https://doi.org/10.1038/srep05019
  21. Cooney MJ, Lewis K, Harris K, Zhang Q, Yan T. Start up performance of biochar packed bed anaerobic digesters. Journal of Water Process Engineering. 2016;9:e7–13. https://doi.org/10.1016/j.jwpe.2014.12.004
  22. Reza MT, Rottler E, Tölle R, Werner M, Ramm P, Mumme J. Production, characterization, and biogas application of magnetic hydrochar from cellulose. Bioresour Technol. 2015;186:34–43. http://dx.doi.org/10.1016/j.biortech.2015.03.044
  23. Shen Y, Linville JL, Urgun-Demirtas M, Schoene RP, Snyder SW. Producing pipeline-quality biomethane via anaerobic digestion of sludge amended with corn stover biochar with in-situ CO2 removal. Appl Energy [Internet]. 2015;158:300–9. http://dx.doi.org/10.1016/j.apenergy.2015.08.016
  24. Wang D, Ai J, Shen F, Yang G, Zhang Y, Deng S, et al. Improving anaerobic digestion of easy-acidification substrates by promoting buffering capacity using biochar derived from vermicompost. Bioresour Technol. 2017;227:286–96. https://doi.org/10.1016/j.biortech.2016.12.060
  25. Zhuang H, Xie Q, Shan S, Fang C, Ping L, Zhang C, et al. Performance, mechanism and stability of nitrogen-doped sewage sludge based activated carbon supported magnetite in anaerobic degradation of coal gasification wastewater. Science of the Total Environment [Internet]. 2020;737:140285. https://doi.org/10.1016/j.scitotenv.2020.140285
  26. Zhang ZP, Show KY, Tay JH, Liang DT, Lee DJ. Biohydrogen production with anaerobic fluidized bed reactors-A comparison of biofilm-based and granule-based systems. Int J Hydrogen Energy. 2008;33(5):1559–64. https://doi.org/10.1016/j.ijhydene.2007.09.048
  27. Wahab MA, Habouzit F, Bernet N, Jedidi N, Escudié R. Evaluation of a hybrid anaerobic biofilm reactor treating winery effluents and using grape stalks as biofilm carrier. Environmental Technology2016;37(13):1676–82. https://doi.org/10.1080/09593330.2015.1127291
  28. Svensson LM, Björnsson L, Mattiasson B. Enhancing performance in anaerobic high-solids stratified bed digesters by straw bed implementation. Bioresour Technol. 2007;98(1):46–52. https://doi.org/10.1016/j.biortech.2005.11.023
  29. Acharya BK, Mohana S, Madamwar D. Anaerobic treatment of distillery spent wash - A study on upflow anaerobic fixed film bioreactor. Bioresour Technol. 2008;99(11):4621–6. https://doi.org/10.1016/j.biortech.2007.06.060
  30. Masebinu SO, Akinlabi ET, Muzenda E, Aboyade AO. A review of biochar properties and their roles in mitigating challenges with anaerobic digestion. Renewable and Sustainable Energy Reviews [Internet]. 2019;103:291–307. https://doi.org/10.1016/j.rser.2018.12.048
  31. Borth PLB, Perin JKH, Torrecilhas AR, Lopes DD, Santos SC, Kuroda EK, et al. Pilot-scale anaerobic co-digestion of food and garden waste: Methane potential, performance and microbial analysis. Biomass Bioenergy. 2022;157:106331. https://doi.org/10.1016/j.biombioe.2021.106331
  32. Diaz Vento I, Ancco M, Peña Davila G, Ancco-Loza R, Davila Del-Carpio G, Jiménez Pacheco HG. Effects of biochar obtained from grape agricultural residues on biogas generation. Rev. Investig. Altoandin. 2022;24(4):278–88. http://dx.doi.org/10.18271/ria.2022.423
  33. Wang S, Shi F, Li P, Yang F, Pei Z, Yu Q, et al. Effects of rice straw biochar on methanogenic bacteria and metabolic function in anaerobic digestion. Sci Rep. 2022;12(1):6971. https://doi.org/10.1038/s41598-022-10682-2
  34. Khuntia HK, Chandrashekar S, Chanakya HN. Treatment of household greywater laden with household chemical products in a multi-chambered anaerobic biofilm reactor. Sustain Cities Soc [Internet]. 2019;51:101783. Available from: https://doi.org/10.1016/j.scs.2019.101783
  35. Camacho Muñoz R, Hoyos Concha J. Biodegradación anaerobia de un material biodegradable bajo digestión anaerobia termófila. Biotecnología en el Sector Agropecuario y Agroindustrial. 2014;12(2):20–9.
  36. Mijaylova-Nacheva P, Peña-Loera B, Cuevas-Velasco S. Anaerobic treatment of organic chemical wastewater using packed bed reactors. Water Science and Technology. 2006;54(10):67–77. https://doi.org/10.2166/wst.2006.803
  37. Jiang H, Shen Y, Ma C, Zhao J, Wang Y, Li Y, et al. Solid-state anaerobic digestion of chicken manure and corn straw with different loading amounts. Pol. J. Environ. Stud. 2021;30(3):2117-2125. https://doi.org/10.15244/pjoes/12418
  38. Lü F, Luo C, Shao L, He P. Biochar alleviates combined stress of ammonium and acids by firstly enriching Methanosaeta and then Methanosarcina. Water Res. 2016;90:34–43. http://dx.doi.org/10.1016/j.watres.2015.12.029
  39. Linville JL, Leon PI de, Shen Y, Leon PAI de, Schoene RP, Urgun-demirtas M. In-situ biogas upgrading during anaerobic digestion of food waste amended with walnut shell biochar at bench scale. Waste Manag Res. 2017;35(6):669-679. https://doi.org/10.1177/0734242X17704716.
  40. Corrales LC, Antolinez Romero DM, Bohórquez Macías JA, Corredor Vargas AM. Bacterias anaerobias: procesos que realizan y contribuyen a la sostenibilidad de la vida en el planeta. Nova. 2015;13(24):55. https://doi.org/10.22490/24629448.1717
  41. Khalid A, Arshad M, Anjum M, Mahmood T, Dawson L. The anaerobic digestion of solid organic waste. Waste Management. 2011;31(8):1737–44. http://dx.doi.org/10.1016/j.wasman.2011.03.021
  42. Dev S, Saha S, Kurade MB, Salama ES, El-Dalatony MM, Ha GS, et al. Perspective on anaerobic digestion for biomethanation in cold environments. Renew. Sustain. Energy Rev. 2019;103:85–95. https://doi.org/10.1016/j.rser.2018.12.034
  43. Mumme J, Srocke F, Heeg K, Werner M. Use of biochars in anaerobic digestion. Bioresour Technol. 2014;164:189–97. https://doi.org/10.1016/j.biortech.2014.05.008
  44. Angelidaki I, Alves M, Bolzonella D, Borzacconi L, Campos JL, Guwy AJ, et al. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays. Water Science and Technology. 2009;59(5):927–34. https://doi.org/10.2166/wst.2009.040
  45. Xu Z, Zhao M, Miao H, Huang Z, Gao S, Ruan W. In situ volatile fatty acids influence biogas generation from kitchen wastes by anaerobic digestion. Bioresour Technol. 2014;163:186–92. http://dx.doi.org/10.1016/j.biortech.2014.04.037
  46. Mshandete A, Björnsson L, Kivaisi AK, Rubindamayugi MST, Mattiasson B. Effect of particle size on biogas yield from sisal fibre waste. Renew Energy. 2006;31(14):2385–92. https://doi.org/10.1016/j.renene.2005.10.015
  47. Alcaldía de Cucuta. Palacio Municipal Alcaldía de Cáchira. 2020 [cited 2022 Mar 22]. Cáchira, Norte de Santander (sitio en Internet). Available from: https://www.cucutanuestra.com/temas/geografia/municipios/region-centro/cachira/cachira.htm
  48. Serrano Guerrero S. Plan de Desarrollo 2020 - 2023. Consejo Municipal de Norte de Santander [Internet]. 2020;1–316. Available from: https://www.atlantico.gov.co/index.php/politicas-planes/plandesarrollo/13308-plan-de-desarrollo-2020-2023
  49. MinAgricultura. Ministerio de Agricultura. 2020 [cited 2023 Feb 22]. Evaluaciones Agropecuarias Municipales EVA - Ministerio de Agricultura y Desarrollo Rural. Available from: https://www.datos.gov.co/Agricultura-y-Desarrollo-Rural/Evaluaciones-Agropecuarias-Municipales-EVA/2pnw-mmge
  50. Solarte JC, Mariscal JP, Aristizábal BH. Evaluación de la digestión y co-digestión anaerobia de residuos de comida y de poda en bioreactores a escala laboratorio. rev.ion. 2017;30(1):105-116. http://dx.doi.org/10.18273/revion.v30n1-2017008
  51. Ferrer I, Garfí M, Uggetti E, Ferrer-Martí L, Calderon A, Velo E. Biogas production in low-cost household digesters at the Peruvian Andes. Biomass Bioenergy. 2011;35(5):1668–74. https://doi.org/10.1016/j.biombioe.2010.12.036
  52. Garfí M, Martí-Herrero J, Garwood A, Ferrer I. Household anaerobic digesters for biogas production in Latin America: A review. Renewable and Sustainable Energy Reviews [Internet]. 2016;60:599–614. Available from: http://dx.doi.org/10.1016/j.rser.2016.01.071
  53. Sunyoto NMS, Zhu M, Zhang Z, Zhang D. Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates food waste. Bioresour Technol. 2016;219:29–36. https://doi.org/10.1016/j.biortech.2016.07.089
  54. Zabaniotou A, Stavropoulos G, Skoulou V. Activated carbon from olive kernels in a two-stage process: Industrial improvement. Bioresour Technol. 2008;99(2):320–6. https://doi.org/10.1016/j.biortech.2006.12.020