v. 30 n. 1 (2017): Revista ION
Artigo de investigação científica e/ou tecnológica

Syngas de gaseificação de madeira para obter um útil para biocombustíveis e/ou produção de produtos químicos

Laura Suárez Hernández
Universidad de Antioquia
Juan Pérez Bayer
Universidad de Antioquia
Rolando Barrera Zapata
Universidad de Antioquia

Publicado 2017-06-30

Palavras-chave

  • gaseificação em leito arrastado,
  • Aspen Plus,
  • biocombustíveis líquidos,
  • biomassa,
  • syngas

Como Citar

Suárez Hernández, L., Pérez Bayer, J., & Barrera Zapata, R. (2017). Syngas de gaseificação de madeira para obter um útil para biocombustíveis e/ou produção de produtos químicos. REVISTA ION, 30(1). https://doi.org/10.18273/revion.v30n1-2017005

Resumo

Neste trabalho mostra-se um modelo de equilíbrio termodinâmico o qual foi desenvolvido para simular o processo de produção de syngas num gaseificador de leito arrastado, para a obtenção de biocombustíveis líquidos e/ou produtos químicos. O processo foi modelado usando o software Aspen Plus, considerando as etapas de pre-tratamento e acondicionamento da biomassa (secagem, torrefação e moagem), gaseificação em leito arrastado, limpeza e condicionamento do gás de síntese produzido, e a etapa final da reação shift para ajustar a relação H2/CO. Adicionalmente, também foi modelada uma Unidade de Separação de Ar (ASU) para a produção de oxigênio como agente de gaseificação. A validação do modelo foi realizada a partir dos dados experimentais disponíveis na literatura. Os erros relativos encontrados foram de 7,8%, 11,8% e 8,8%, para as variáveis H2/CO, eficiência a frio, e poder calorifico, respectivamente. Além disso, a avaliação da sensibilidade do modelo para determinar o efeito de variáveis do processo, temperatura de torrefacção e o fator de oxigênio, mostraram bons resultados. Em consequência, considera-se que o modelo desenvolvido é uma ferramenta útil para a análise computacional da sensibilidade dos processos de produção de combustíveis líquidos e/ou produtos químicos de gaseificação de biomassa em reatores de leito arrastado.  

Downloads

Não há dados estatísticos.

Referências

[1] Trippe F, Fröhling M, Schultmann F, Stahl R, Henrich E. Techno-economic assessment of gasification as a process step within biomass-to-liquid (BtL) fuel and chemicals production. Fuel Process. Technol. 2011;92(11):2169–84.

[2] Swanson R, Platon A, Satrio J, Brown R. Techno-economic analysis of biomass-to-liquids production based on gasification. Fuel. 2010;89(Suppl.1):S11–S19.

[3] Ogi T, Nakanishi M, Fukuda Y, Matsumoto K. Gasification of oil palm residues (empty fruit bunch) in an entrained-flow gasifier. Fuel. 2013;104:28–35

[4] Adeyemi I, Janajreh I. Modeling of the entrained flow gasification: Kinetics-based ASPEN Plus model. Renew. Energy.2014;82:77-84.

[5] Tremel A, Becherer D, Fendt S, Gaderer M, Spliethoff H. Performance of entrained flow and fluidised bed biomass gasifiers on different scales. Energy Convers. Manag. 2013;69:95–106.

[6] Ramzan N, Ashraf A, Naveed S, Malik A. Simulation of hybrid biomass gasification using Aspen plus: A comparative performance analysis for food, municipal solid and poultry waste. Biomass Bioenergy. 2011;35(9):3962–9.

[7] Kong X, Zhong W, Du W, Qian F. Three stage equilibrium model for coal gasification in entrained flow gasifiers based on aspen plus. Chinese J. Chem. Eng. 2013;21(1):79–84.

[8] Kunze C, Spliethoff H. Modelling, comparison and operation experiences of entrained flow gasifier. Energy Convers. Manag. 2011;52(5):2135–41.

[9] Adeyemi I, Arink T, Janajreh I. Numerical Modeling of the Entrained Flow Gasification (EFG) of Kentucky Coal and Biomass. Energy Procedia. 2015;75:232–9.

[10] Biagini E, Bardi A, Pannocchia G, Tognotti L. Development of an Entrained Flow Gasifier Model for Process Optimization Study. Ind. Eng. Chem. Res. 2009;48(19):9028–33.

[11] Muresan M, Cormos C, Agachi P. Techno-economical assessment of coal and biomass gasification-based hydrogen production supply chain system. Chem. Eng. Res. Des. 2013;91(8):1527–41.

[12] Barrera R, Salazar C, Pérez J. Thermochemical Equilibrium Model of Synthetic Natural Gas Production from Coal Gasification Using Aspen Plus. International Journal of Chemical Engineering. 2014;1-18.

[13] Begum S, Rasul M, Akbar D. A Numerical Investigation of Municipal Solid Waste Gasification Using Aspen Plus. Procedia Eng. 2014;90:710–7.

[14] Lee H, Choi S, Paek M. A simple process modelling for a dry-feeding entrained bed coal gasifier. Proc. Inst. Mech. Eng. Part A J. Power Energy. 2011;225(1):74–84.

[15] Chen W, Chen C, Hung C, Shen C, Hsu H. A comparison of gasification phenomena among raw biomass, torrefied biomass and coal in an entrained-flow reactor. Appl. Energy. 2013;112:421–30.

[16] Luque R, Campelo J, Clark J. Handbook of Biofuels Production. Woodhead Publishing Series in Energy 2011.

[17] Der Stelt M, Gerhauser H; Kiel J and Ptasinski K. Biomass upgrading by torrefaction for the production of biofuels: A review, Biomass and Bioenergy. 2011;35(9):3748–62.

[18] Li J, Zhang X, Pawlak-Kruczek H, Yang W, Kruczek P and Blasiak W. Process simulation of co-firing torrefied biomass in a 220MWe coal-fired power plant, Energy Convers. Manag. 2014,84:503–11,

[19] Aspentech, Aspen Plus Getting Started Modeling Processes with Electrolytes, 2007.

[20] Svoboda K, Pohořelý M, Hartman M, and Martinec J. Pretreatment and feeding of biomass for pressurized entrained flow gasification. Fuel Process. Technol. 2009;90 (5):629–35.

[21] Maski D, Darr M and Anex R. Torrefaction of cellulosic biomass upgrading. Energy and cost model, Am. Soc. Agric. Biol. Eng. Annu. Int. Meet. 2010, ASABE 2010;6:4443–60.

[22] Luque J, Campelo R, Clark J. Handbook of biofuels production: Processes and technologies. United Kingdom: Woodhead Publishing; 2011.

[23] Desideri E, Manfrida U, Sciubba G. ECOS 2012: The 25th international conference on efficiency, cost, optimization and simulation of energy, 2012.

[24] Ibrahim R, Darvell L, Jones and Williams A. Physicochemical characterisation of torrefied biomass J. Anal. Appl. Pyrolysis. 2013;103: 21–30.

[25] Higman C and van der Burgt M. Gasification Processes Gasification. 2003;85–170.

[26] Santo U, Seifert H, Kolb T, Krebs L, Kuhn D, Wiemer H, Pantouflas E, Zarzalis N. Conversion of biomass based slurry in an entrained flow gasifier. Chem. Eng. Technol. 2007;30(7):967–9.

[27] Basu P. Biomass gasification and pyrolysis : practical design and theory. United States: Elsevier Inc., 2010.

[28] Tapasvi D, Kempegowda R, Tran K, Skreiberg O, Grønli M. A simulation study on the torrefied biomass gasification. Energy Convers. Manag. 2015;90:446–57.

[29] Zhang W. Automotive fuels from biomass via gasification. Fuel Process. Technol. 2010;91 (8):866–76.

[30] Wanga M, Wellerb L, Jones C, Hanna D. Contemporary issues in thermal gasification of biomass and its application to electricity and fuel production. Biomass and Bioenergy. 2008; 32:573–81.

[31] Twigg M. Chapter 6: Water-gas-Shift Reaction, in Catalyst Handboo. London: M. Publishing, Editor; 1996.

[32] Huisman G, Brinkert J, Cornelissen R. Clean Hydrogen-rich Synthesis Gas Mass and Energy Balance for the Whole Plant. 2009.

[33] Edward P, Abbott J, (12) United States Patent, Vol. 2, no. 12, 2014.

[34] Smith A, Klosek J. A review of air separation technologies and their integration with energy conversion processes Fuel Process. Technol. 2001;70(2): 115–34.

[35] Aneke M, Wang M. Potential for improving the energy efficiency of cryogenic air separation unit (ASU) using binary heat recovery cycles. Appl. Therm. Eng. 2015;81:223–31.

[36] Bose A. Simulation of Air Liquefaction Using Aspen Plus Fulfillment of the Requirement for the, National institute of technology, Rourkela, India, 2012.

[37] Weiland F, Hedman H,Marklund M, Wiinikka H, Öhrman O, Gebart R. Pressurized oxygen blown entrained-flow gasification of wood powder. Energy and Fuels. 2013;27(2):932–41.

[38] Weiland F, Nordwaeger M, Olofsson I, Wiinikka H, Nordin A. Entrained flow gasification of torrefied wood residues. Fuel Process. Technol. 2014;125:51–8.

[39] Jarungthammachote S, Dutta A. Thermodynamic equilibrium model and second law analysis of a downdrast waste gasifier. Energy. 2007;32:1660–9.

[40] Vaezi M, Passandideh-Fard M, Moghiman M, Chamchi M. On a methodology for selecting biomass materials for gasification purposes. Fuel Process. Technol. 2012;98:74–81.

[41] Weiland F, Wiinikka H, Hedman H, Wennebro J, Pettersson E, Gebart R. Influence of process parameters on the performance of an oxygen blown entrained flow biomass gasifier. Fuel. 2015;153:510–9.