Estudio de la perdida de conductividad debida a empotramiento de propante en formaciones de shale mediante simulación numérica

Kristhian Leandro Peña Cerón, Luis Carlos Prada Socha, José Carlos Cárdenas Montes

Resumen


El empotramiento es inherente en la estimulación de yacimientos a través de fracturamiento hidráulico, ocurre cuando los esfuerzos en sitio son aplicados a la superficie de los propantes causando su incrustación en la formación. El empotramiento ocasiona pérdidas de conductividad producción y dinero, intensificándose en yacimientos no convencionales de formaciones de lutitas.


Este trabajo describe algunos factores composicionales y geomecánicos que influyen en el empotramiento, así como modelos matemáticos de empotramiento. Se estudia la pérdida de conductividad y ancho de fractura a través de simulación numérica. El software Predick K fue usado para pre-seleccionar los tipos de propante implementados en la simulación. La simulación numérica fue corrida en un simulador de Aceite Negro: IMEX, de la suite CMG.

Las fracturas empotradas son simuladas con un modelo de doble permeabilidad para un yacimiento de gas de lutita, considerando el esfuerzo de cierre efectivo mediante multiplicadores de permeabilidad y porosidad. En este artículo se generaron curvas de conductividad que muestran el desempeño del propante con esfuerzos aplicados en la producción. Debido a la escasez de datos de yacimientos de lutita, trabajar con la metodología de este trabajo es conveniente, los multiplicadores pueden replicar la geomecánica sin un alto esfuerzo computacional. Adicionalmente, se muestra los impactos de la mineralogía y geomecánica en la explotación de gas de lutita.


Palabras clave: Geomecánica, Fractura hidráulica, Modelo de doble permeabilidad, Multiplicador de porosidad, Multiplicador de permeabilidad, Yacimiento de gas, Yacimiento no convencional.


Texto completo:

PDF

Referencias


Akrad, O., Miskimins, J., & Prassad, M. (2011)

The Effects of Fracturing Fluids on Shale Rock

Mechanical Properties and Proppant Embedment.

SPE Annual Technical Conference and Exhibition,

Denver, Colorado, USA. SPE 146658: 7-9.

Alexander, T., Baihly, J., Boyer, C., Clark, B.,

Waters, G., Jochen, V., Le Calvez, J., Lewis, R.,

Miller, C.,Thaeler, J. & Toelle, B (2011) Shale Gas

Revolution. Oilfield Review, Autumn 2011; 23(3), 40-

Alramahi, B. & Sundberg, M. (2012) Proppant

Embedment and Conductivity of Hydraulic Fractures

in Shales. 48th US Rock Mechanics/Geomechanics

Symposium, Chicago, IL, U.S.A. ARMA 12-291.

Chaitanya, M. (2012) Mechanics of Light Weight

Proppants: A Discrete Approach. Ph.D. Dissertation,

Texas A&M University, College Station, Texas, USA,

pp: 40.

Ciezobka, J. & Salehi, I. (2013) Controlled

Hydraulic Fracturing of Naturally Fractured Shales

– A Case Study in the Marcellus Shale Examining

How to Identify and Exploit Natural Fractures.

SPE Unconventional Resources Conference-USA,

Woodlands, Texas, USA. SPE-164524-MS: 4, 5.

COMPUTER MODEL GROUP. (2012) User’s Guide

IMEX Advanced Black Oil/Gas Reservoir Simulator.

COMPUTER MODEL GROUP. (2014) CMG Suite,

General Release v.14.10.

Corapcioglu, H., Miskimins, J. & Prassad, M. (2014)

Fracturing Fluid Effects on Young’s Modulus and

Embedment in the Niobara Formation. SPE Annual

Technical Conference and Exhibition, Amsterdam,

The Netherlands. SPE-170835: 8, 13, 14.

CORE LABORATORIES. Program Description and

User’s Manual. Predict K v.13.1

Cui, A., Glover, K. & Wust, R.A.J. (2014) Elastic

and plastic mechanical properties of liquid-rich

unconventional shales and their implications for

hydraulic fracturing and proppant embedment: a case

study of the Nordegg Member in Alberta, Canada.

th US Rock Mechanics/Geomechanics Symposium,

Minneapolis, MN, USA. ARMA 14-7556.

Elamin, A., Fathi, E. & Ameri, S. (2013) Simulation

of Multicomponent Gas Flow and Condensation in

Marcellus Shale Reservoir. SPE Unconventional

Resources Conference-USA, Woodlands, Texas,

USA. SPE-164538-MS: 8.

Espinoza, C. (1983) A New Formulation for

Numerical Simulation of Compaction, Sensitivity

Studies for Steam Injection. SPE Reservoir Simulation

Symposium, San Francisco, California, USA. SPE-

-MS.

Fredd, C., McConnell, S., Boney, C. & England, K.

(2000) Experimental Study of Hydraulic Fracture

Conductivity Demonstrates the Benefits of Using

Proppants. 2000 SPE Rocky Mountain Regional/Low

Permeability Reservoirs Symposium, Denver, CO,

USA. SPE 60326: 6, 14.

Gao, Y., SINOPEC Petroleum Exploration &

Production Research Institute, Lv, Y., Wang, M., China

Pingmei Shenma Group, Li, K., China University of

Geosciences (Beijing) & Yangtze University. (2013)

New Mathematical Models for Calculating the

Proppant Embedment and Conductivity. International

Petroleum Technology Conference, Beijing, China.

IPTC 16410.

Guo, J., Liu, Y. (2012) Modeling of Proppant

Embedment: Elastic Deformation and Creep

Deformation. SPE International Production and

Operations Conference and Exhibition, Doha, Qatar.

SPE 157449: 4, 8.

Huitt, J. & McGlothlin, Jr. (1958) The Propping of

Fractures in Formations Susceptible to Proppingsand

Embedment. Pacific Coast District, Division of

Production, Los Angeles, California, USA. API-58-

Kassis, S. & Sondergeld, C. (2010) Fracture

Permeability of Gas Shale: Effects of Roughness,

Fracture Offset, Proppant, and Effective Stress.

CPS/SPE International Oil & Gas Conference and

Exhibition in China, Beijing, China. SPE 131376: 3,

, 11.

King, G. (2010) Thirty Years of Gas Shale Fracturing:

What Have We Learned? SPE Annual Technical

Conference and Exhibition, Florence, Italy. SPE

: 8, 17.

Lacy, L., Rickards, A. & Bilden, D. (1998) FractureWidth and Embedment Testing in Soft Reservoir

Sandstone. SPE Drilling & Completion, 13(01), 25-

: 27, 28.

Lacy, L., Rickards, A. & Ali, S. (1997) Embedment

and Fracture Conductivity in Soft Formations

Associated with HEC, Borate and Water-Based

Fracture Designs. 1997 SPE Annual Technical

Conference and Exhibition, San Antonio, Texas,

USA. SPE 38590.

Martins, J., Leung, K., Jackson, M., Stewart, D. &

Carr, A. (1992) Tip Screenout Fracturing Applied to

the Ravenspurn South Gas Field Development. SPE

Production Engineering, 7(3), 252-258: 253.

Montgomery, C. & Steanson (1985) Proppant

Selection: The Key to Successful Fracture

Stimulation. Journal of Petroleum Technology,

(12), 2163-2172: 2165.

Nagarajan, N. Honarpour, M. & Arasteh. (2013)

Critical Role of Rock and Fluid - Impact on Reservoir

Performance on Unconventional Shale Reservoirs.

Unconventional Resources Technology Conference,

Denver, Colorado, USA. SPE-168864-MS: 2.

Silseth, J. (2015) Effect of Relative Permeability

on History Matching a Permian Basin Oil Well.

M.Sc. Thesis, Department of Petroleum Engineering

and Applied Geophysics, Norwegian University of

Science and Technology, Norway, 109pp: 28.

Terracina, J., Turner, J., Collins, D. & Spillars.

(2012) Proppant Selection and Its Effect on the

Results of Fracturing Treatments Performed in Shale

Formations. SPE Annual Technical Conference and

Exhibition, Florence, Italy. SPE 135502: 3.

Wang, G. & Carr, R. (2013) Organic-rich Marcellus

Shale lithofacies modeling and distribution pattern

analysis in the Appalachian Basin. AAPG Bulletin,

December 2013; 97 (12), 2173-2205: 21181.

Yu, W. & Spehrnoori, K. (2013a) Simulation of

Gas Desorption and Geomechanics Effects for

Unconventional Gas Resources. SPE Western

Regional & AAPG Pacific Section Meeting, 2013

Joint Technical Conference, Monterrey, California,

USA. SPE 165377.

Yu, W. & Spehrnoori, K. (2013b) Simulation of

Proppant Distribution Effect on Well Performance

in Shale Gas Reservoirs. SPE Unconventional

Resources Conference-Canada, Calgary, Alberta,

Canada. SPE 167225.

Yu, W., Sepehrnoori, K. Patzek, T. (2014) Evaluation

of Gas Adsorption in Marcellus Shale. SPE Annual

Technical Conference and Exhibition, Amsterdam,

The Netherlands. SPE-170801-MS: 3, 10.




Universidad Industrial de Santander

Cr 27 Cl9 Cuidad Universitaria Telefono: 6344000 ext 2826 - 1053

A.A. 678

Bucaramanga - Colombia