Estudio de la perdida de conductividad debida a empotramiento de propante en formaciones de shale mediante simulación numérica
Publicado 2017-01-30
Como Citar
Copyright (c) 2016 REVISTA FUENTES
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Resumo
El empotramiento es inherente en la estimulación de yacimientos a través de fracturamiento hidráulico, ocurre cuando los esfuerzos en sitio son aplicados a la superficie de los propantes causando su incrustación en la formación. El empotramiento ocasiona pérdidas de conductividad producción y dinero, intensificándose en yacimientos no convencionales de formaciones de lutitas.
Este trabajo describe algunos factores composicionales y geomecánicos que influyen en el empotramiento, así como modelos matemáticos de empotramiento. Se estudia la pérdida de conductividad y ancho de fractura a través de simulación numérica. El software Predick K fue usado para pre-seleccionar los tipos de propante implementados en la simulación. La simulación numérica fue corrida en un simulador de Aceite Negro: IMEX, de la suite CMG.
Las fracturas empotradas son simuladas con un modelo de doble permeabilidad para un yacimiento de gas de lutita, considerando el esfuerzo de cierre efectivo mediante multiplicadores de permeabilidad y porosidad. En este artículo se generaron curvas de conductividad que muestran el desempeño del propante con esfuerzos aplicados en la producción. Debido a la escasez de datos de yacimientos de lutita, trabajar con la metodología de este trabajo es conveniente, los multiplicadores pueden replicar la geomecánica sin un alto esfuerzo computacional. Adicionalmente, se muestra los impactos de la mineralogía y geomecánica en la explotación de gas de lutita.
Palabras clave: Geomecánica, Fractura hidráulica, Modelo de doble permeabilidad, Multiplicador de porosidad, Multiplicador de permeabilidad, Yacimiento de gas, Yacimiento no convencional.
Downloads
Referências
- Akrad, O., Miskimins, J., & Prassad, M. (2011)
- The Effects of Fracturing Fluids on Shale Rock
- Mechanical Properties and Proppant Embedment.
- SPE Annual Technical Conference and Exhibition,
- Denver, Colorado, USA. SPE 146658: 7-9.
- Alexander, T., Baihly, J., Boyer, C., Clark, B.,
- Waters, G., Jochen, V., Le Calvez, J., Lewis, R.,
- Miller, C.,Thaeler, J. & Toelle, B (2011) Shale Gas
- Revolution. Oilfield Review, Autumn 2011; 23(3), 40-
- Alramahi, B. & Sundberg, M. (2012) Proppant
- Embedment and Conductivity of Hydraulic Fractures
- in Shales. 48th US Rock Mechanics/Geomechanics
- Symposium, Chicago, IL, U.S.A. ARMA 12-291.
- Chaitanya, M. (2012) Mechanics of Light Weight
- Proppants: A Discrete Approach. Ph.D. Dissertation,
- Texas A&M University, College Station, Texas, USA,
- pp: 40.
- Ciezobka, J. & Salehi, I. (2013) Controlled
- Hydraulic Fracturing of Naturally Fractured Shales
- – A Case Study in the Marcellus Shale Examining
- How to Identify and Exploit Natural Fractures.
- SPE Unconventional Resources Conference-USA,
- Woodlands, Texas, USA. SPE-164524-MS: 4, 5.
- COMPUTER MODEL GROUP. (2012) User’s Guide
- IMEX Advanced Black Oil/Gas Reservoir Simulator.
- COMPUTER MODEL GROUP. (2014) CMG Suite,
- General Release v.14.10.
- Corapcioglu, H., Miskimins, J. & Prassad, M. (2014)
- Fracturing Fluid Effects on Young’s Modulus and
- Embedment in the Niobara Formation. SPE Annual
- Technical Conference and Exhibition, Amsterdam,
- The Netherlands. SPE-170835: 8, 13, 14.
- CORE LABORATORIES. Program Description and
- User’s Manual. Predict K v.13.1
- Cui, A., Glover, K. & Wust, R.A.J. (2014) Elastic
- and plastic mechanical properties of liquid-rich
- unconventional shales and their implications for
- hydraulic fracturing and proppant embedment: a case
- study of the Nordegg Member in Alberta, Canada.
- th US Rock Mechanics/Geomechanics Symposium,
- Minneapolis, MN, USA. ARMA 14-7556.
- Elamin, A., Fathi, E. & Ameri, S. (2013) Simulation
- of Multicomponent Gas Flow and Condensation in
- Marcellus Shale Reservoir. SPE Unconventional
- Resources Conference-USA, Woodlands, Texas,
- USA. SPE-164538-MS: 8.
- Espinoza, C. (1983) A New Formulation for
- Numerical Simulation of Compaction, Sensitivity
- Studies for Steam Injection. SPE Reservoir Simulation
- Symposium, San Francisco, California, USA. SPE-
- -MS.
- Fredd, C., McConnell, S., Boney, C. & England, K.
- (2000) Experimental Study of Hydraulic Fracture
- Conductivity Demonstrates the Benefits of Using
- Proppants. 2000 SPE Rocky Mountain Regional/Low
- Permeability Reservoirs Symposium, Denver, CO,
- USA. SPE 60326: 6, 14.
- Gao, Y., SINOPEC Petroleum Exploration &
- Production Research Institute, Lv, Y., Wang, M., China
- Pingmei Shenma Group, Li, K., China University of
- Geosciences (Beijing) & Yangtze University. (2013)
- New Mathematical Models for Calculating the
- Proppant Embedment and Conductivity. International
- Petroleum Technology Conference, Beijing, China.
- IPTC 16410.
- Guo, J., Liu, Y. (2012) Modeling of Proppant
- Embedment: Elastic Deformation and Creep
- Deformation. SPE International Production and
- Operations Conference and Exhibition, Doha, Qatar.
- SPE 157449: 4, 8.
- Huitt, J. & McGlothlin, Jr. (1958) The Propping of
- Fractures in Formations Susceptible to Proppingsand
- Embedment. Pacific Coast District, Division of
- Production, Los Angeles, California, USA. API-58-
- Kassis, S. & Sondergeld, C. (2010) Fracture
- Permeability of Gas Shale: Effects of Roughness,
- Fracture Offset, Proppant, and Effective Stress.
- CPS/SPE International Oil & Gas Conference and
- Exhibition in China, Beijing, China. SPE 131376: 3,
- , 11.
- King, G. (2010) Thirty Years of Gas Shale Fracturing:
- What Have We Learned? SPE Annual Technical
- Conference and Exhibition, Florence, Italy. SPE
- : 8, 17.
- Lacy, L., Rickards, A. & Bilden, D. (1998) FractureWidth and Embedment Testing in Soft Reservoir
- Sandstone. SPE Drilling & Completion, 13(01), 25-
- : 27, 28.
- Lacy, L., Rickards, A. & Ali, S. (1997) Embedment
- and Fracture Conductivity in Soft Formations
- Associated with HEC, Borate and Water-Based
- Fracture Designs. 1997 SPE Annual Technical
- Conference and Exhibition, San Antonio, Texas,
- USA. SPE 38590.
- Martins, J., Leung, K., Jackson, M., Stewart, D. &
- Carr, A. (1992) Tip Screenout Fracturing Applied to
- the Ravenspurn South Gas Field Development. SPE
- Production Engineering, 7(3), 252-258: 253.
- Montgomery, C. & Steanson (1985) Proppant
- Selection: The Key to Successful Fracture
- Stimulation. Journal of Petroleum Technology,
- (12), 2163-2172: 2165.
- Nagarajan, N. Honarpour, M. & Arasteh. (2013)
- Critical Role of Rock and Fluid - Impact on Reservoir
- Performance on Unconventional Shale Reservoirs.
- Unconventional Resources Technology Conference,
- Denver, Colorado, USA. SPE-168864-MS: 2.
- Silseth, J. (2015) Effect of Relative Permeability
- on History Matching a Permian Basin Oil Well.
- M.Sc. Thesis, Department of Petroleum Engineering
- and Applied Geophysics, Norwegian University of
- Science and Technology, Norway, 109pp: 28.
- Terracina, J., Turner, J., Collins, D. & Spillars.
- (2012) Proppant Selection and Its Effect on the
- Results of Fracturing Treatments Performed in Shale
- Formations. SPE Annual Technical Conference and
- Exhibition, Florence, Italy. SPE 135502: 3.
- Wang, G. & Carr, R. (2013) Organic-rich Marcellus
- Shale lithofacies modeling and distribution pattern
- analysis in the Appalachian Basin. AAPG Bulletin,
- December 2013; 97 (12), 2173-2205: 21181.
- Yu, W. & Spehrnoori, K. (2013a) Simulation of
- Gas Desorption and Geomechanics Effects for
- Unconventional Gas Resources. SPE Western
- Regional & AAPG Pacific Section Meeting, 2013
- Joint Technical Conference, Monterrey, California,
- USA. SPE 165377.
- Yu, W. & Spehrnoori, K. (2013b) Simulation of
- Proppant Distribution Effect on Well Performance
- in Shale Gas Reservoirs. SPE Unconventional
- Resources Conference-Canada, Calgary, Alberta,
- Canada. SPE 167225.
- Yu, W., Sepehrnoori, K. Patzek, T. (2014) Evaluation
- of Gas Adsorption in Marcellus Shale. SPE Annual
- Technical Conference and Exhibition, Amsterdam,
- The Netherlands. SPE-170801-MS: 3, 10.