Sismo de San Gabriel, 27 de julio de 2018 (Ml 4,6): análisis de los parámetros de la fuente sísmica y del contexto sísmico de la región suroeste del Valle Central, Costa Rica

Resumen

Se caracterizan y analizan los parámetros de la fuente sísmica del sismo ocurrido el 27 de julio de 2018 a las 17:50:46 (hora UTC) en San Gabriel de Aserrí (latitud 9,788, longitud -84,101). Este tuvo una profundidad de 15 km y magnitud Ml 4,6. La distribución de la sismicidad localizada y solución de mecanismo focal (MF) indican que probablemente el evento ocurrió en una falla de corrimiento lateral derecho, con componente normal pequeña y rumbo NNW, alto ángulo de buzamiento ~77° e inclinación hacia el NE (strike 326°/dip 77°/rake -165°). Este MF concuerda con otros localizados en el área, el cual evidencia deformación transtensional en el antearco central del país, conocido como el Cinturón Deformado del Centro de Costa Rica (CDCCR). Registros de aceleración en las estaciones sísmicas (%g), permitieron identificar en la escala de Intensidad Modificada de Mercalli (IMM) intensidades instrumentales máximas de IV en comunidades como San Gabriel de Aserrí, San Pablo de León Cortés y San Marcos de Tarrazú.

Palabras clave: Costa Rica, Sismo de San Gabriel, Tensor de momento, Réplicas

Descargas

La descarga de datos todavía no está disponible.

Referencias

Arias, O.; Denyer, P. (1991). Aspectos neotectónicos y geológicos de Puriscal y alrededores, Costa Rica. Revista Geológica de América Central, 12, 83-95. https://doi.org/10.15517/RGAC.V0I12.13046

Barquero, R.; Rojas, W.; Climent, A. (1989). El temblor del 26 de febrero de 1989: Informe sismológico y análisis preliminar de acelerogramas de la presa San Miguel. Instituto Costarricense de Electricidad.

Campos-Durán, D.; Quintero-Quintero, R. (2020). Intensidades macrosísmicas del sismo de Capellades del 30 de noviembre de 2016 (Mw = 5,4) y el contexto sísmico de la región central de Costa Rica. Boletín de Geología, 42(1), 57-68. https://doi.org/10.18273/revbol.v42n1-2020003

Carvalho, J.; Barros, L.; Zahradnik, J. (2019). Inversion for focal mechanisms using waveform envelopes and inaccurate velocity models: Examples from Brazil. Bulletin of the Seismological Society of America, 109(1), 138-151. https://doi.org/10.1785/0120180119

Ci Neo, J.; Huang, Y.; Yao, D.; Wei, S. (2021). Is the aftershock zone area a Good Proxy for the Mainshock Rupture Area? Bulletin of the Seismological Society of America, 111(1), 424-438. https://doi.org/10.1785/0120190200

Denyer, P.; Montero, W.; Alvarado, G.E. (2009). Atlas Tectónico de Costa Rica. Editorial Universidad de Costa Rica.

Fan, C.; Pavlis, G.; Tuncay, K. (2006). GCLgrid: A three-dimensional geographical curvilinear grid library for computational seismology. Computers & Geosciences, 32(3), 371-381. https://doi.org/10.1016/j.cageo.2005.07.001

Fernández, M.; Rojas, W. (2001). Amenaza sísmica y tsunamis en el territorio de Costa Rica. Editorial Universidad de Costa Rica.

GCMT. (2019). Global CMT Catalog Search. Global Centroid Moment Tensor. http://www.globalcmt.org/CMTsearch.html

Güendel, F. (1989). Secuencia sísmica de El Alto del Aguacate, febrero y marzo de 1989. OVSICORIUNA, Catálogo de Temblores 1989, 155161.

Havskov, J.; Ottemoller, L. (1999). SeisAn Earthquake analysis software. Seismological Research Letters, 70(5), 532-534. https://doi.org/10.1785/gssrl.70.5.532

Kobayashi, D.; LaFemina, P.; Geirsson, H.; Chichaco, E.; Abrego, A.; Mora, H.; Camacho, E. (2014). Kinematics of the western Caribbean: Collision of the Cocos Ridge and upper plate deformation. Geochemistry, Geophysics, Geosystems, 15(5), 1671-1683. https://doi.org/10.1002/2014GC005234

Lewis, C.; Boozer, C.; López, A.; Montero, W. (2008). Collision versus sliver transport in the hanging wall at the Middle America subduction zone: Constraints from background seismicity in central Costa Rica. Geochemistry, Geophysics, Geosystems, 9(7). https://doi.org/10.1029/2007GC001711

López, A. (2012). Andersonian and Coulomb stresses in Central Costa Rica and its fault slip tendency potential: new insights into their associated seismic hazard. Geological Society, London, Special Publications, 367, 19-38. https://doi.org/10.1144/SP367.3

Marshall, J.; Fisher, M.; Gardner, T. (2000). Central Costa Rica deformed belt: kinematics of diffuse faulting across the western Panama block. Tectonics, 19(3), 468-492. https://doi.org/10.1029/1999TC001136

Montero, W.; Alvarado, G.E. (1995). El terremoto de Patillos del 30 de diciembre de 1952 (Ms= 5,9) y el contexto neotectónico de la región del volcán Irazú, Costa Rica. Revista Geológica de América Central, 18, 25-42. https://doi.org/10.15517/rgac.v0i18.13522

Montero, W. (1999). El terremoto del 4 de marzo de 1924 (Ms 7,0): ¿Un gran temblor intraplaca relacionado al límite incipiente entre la placa Caribe y la microplaca Panamá? RevistaGeológica de América Central, 22, 25-62. https://doi.org/10.15517/RGAC.V0I22.8586

Montero, W.; Rojas, W. (2014). Las fallas Purires y Picagres, y su relación con la secuencia sísmica del Puriscal de 1990. Revista Geológica de América Central, 50, 39-69. https://doi.org/10.15517/RGAC.V0I50.15107

Montero, W.; Linkimer, L.; Rojas, W. (2016). El sistema de Fallas Navarro: desplazamientos izquierdos a lo largo del cinturón deformado del centro de Costa Rica. Revista Geológica de América Central, 55, 71-100. https://doi.org/10.15517/RGAC.V55I0.27062

Norabuena, E.; Dixon, T.; Schwartz, S.; DeShon, H.; Newman, A.; Protti, M.; González, V.; Doramn, L.; Flueh, E.; Lundgren, P.; Pollitz, F.; Sampson, D. (2004). Geodetic and seismic constraints on some seismogenic zone processes in Costa Rica. Journal of Geophysical Research: Solid Earth, 109(B11). https://doi.org/10.1029/2003JB002931

Pacheco, J.; Quintero, R.; Vega, F.; Segura, J.; Jiménez, W.; González, V. (2006). The Mw 6.4 Damas, Costa Rica, earthquake of 20 November 2004: Aftershocks and slip distribution. Bulletin of the Seismological Society of America, 96(4A), 1332-1343. https://doi.org/10.1785/0120050261

Rojas, W.; Lindholm, C.; Bungum, H.; Boschini, L.; Climent, A.; Barquero, R.; Alvarado, G.; Soto, G.; Montero, W.; Fernández, M.; Protti, M.; Moya, A.; Esquivel, L.; Schmidt, V. (1998). Seismic hazard analysis for the Metropolitan Area of the Central Valley, Costa Rica. Technical Report, NORSAR, Norway.

RSN-UCR. (2014). Informe del sismo 7 de agosto del 2014, 2:50 am., Mag: 4,6 Mw, SENTIDO. Red Sismológica Nacional de la Universidad de Costa Rica. https://rsn.ucr.ac.cr/actividad-sismica/ultimos-sismos/2285-sismo-07-de-agosto-del-2014-2-50-am-mw-4-6

RSN-UCR. (2015). Terremoto de Frailes, 9 de agosto de 1991. Red sismológica Nacional de la Universidad de Costa Rica. https://rsn.ucr.ac.cr/documentos/educativos/vulcanologia/26-sismologia/sismos-historicos/3236-terremoto-defrailes-9-de-agosto-de-1991

Shimazaki, K. (1986). Small and large earthquakes: The effects of the thickness of seismogenic layer and the free surface. In: S. Das, J. Boatwright, C. Scholz (eds.). Earthquake Source Mechanics (pp. 209-216). Vol. 37. American Geophysical Union. https://doi.org/10.1029/GM037p0209

Sokos, E.; Zahradnik, J. (2008). ISOLA a Fortran code and a Matlab GUI to perform multiple-point source inversion of seismic data. Computers and Geosciences, 34(8), 967-977. https://doi.org/10.1016/j.cageo.2007.07.005

Sokos, E.; Zahradnik, J. (2013). Evaluating centroid-moment-tensor uncertainty in the new version of ISOLA software. Seismological Research Letters, 84(4), 656-665. https://doi.org/10.1785/0220130002

Quintero-Quintero, R.; Porras-Espinoza, H. (2018). Recurrencia de sismos en el Valle Central de Costa Rica. Revista Geográfica de América Central, 4(61E), 63-80. https://doi.org/10.15359/rgac.61-4.3

Quintero, R.; Kissling, E. (2001). An improved P-wave velocity reference model for Costa Rica. Geofísica Internacional, 40(1), 3-19.

UNAVCO. (2020). Plate Motion Calculator. https://www.unavco.org/software/geodetic-utilities/plate-motion-calculator/plate-motion-calculator.html#references

Wald, D.; Worden, B.; Quitoriano, V.; Pankow, K. (2006). ShakeMap manual: technical manual, user’s guide, and software guide. U.S. Geological Survey.

Wells, D.; Coppersmith, K. (1994). New empirical relationship among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974-1002.

Wessel, P.; Luis, J.F.; Uieda, L.; Scharroo, R.; Wobbe, F.; Smith, W.H.F.; Tian, D. (2019). The Generic Mapping Tools version 6. Geochemistry, Geophysics, Geosystems, 20(11), 5556-5564. https://doi.org/10.1029/2019GC008515

Zahradnik, J.; Sokos, E. (2018). Fitting waveform envelopes to derive focal mechanisms of moderate earthquakes. Seismological Research Letters, 89(3), 1137-1145. https://doi.org/10.1785/0220170161

Zimmermann, B. (2009). Earthquake Focal Mechanism. Wolfram Demonstrations Project. http://demonstrations.wolfram.com/EarthquakeFocalMechanism/
Publicado
2021-09-30
Sección
Artículos científicos