Vol. 44 Núm. 1 (2022): Boletín de Geología
Artículos científicos

Evaluación del retroceso glaciar de la Sierra Nevada del Cocuy, Colombia a partir de la clasificación de imágenes multisensor

Sergio Mauricio Molano
Universidade Federal do Pará
Diana Paola Cardenas
Universidade Federal do Pará
Howard Snaider Gómez
Universidade Federal do Pará
Dayana Mairely Alvarado
Universidade Federal do Pará
Andrés Fernando Galindo
Universidad Pedagógica y Tecnológica de Colombia
Jeisson Fabian Sanabria
Universidad Pedagógica y Tecnológica de Colombia
Juan Sebastian Gómez-Neita
Universidade Federal do Pará
Biografía

Publicado 2022-01-25

Palabras clave

  • Andes,
  • Cambio climático,
  • Variabilidad climática,
  • Exactitud,
  • Clasificación supervisada

Cómo citar

Molano, S. M. ., Cardenas, D. P., Gómez, H. S., Alvarado, D. M., Galindo, A. F., Sanabria, J. F., & Gómez-Neita, J. S. (2022). Evaluación del retroceso glaciar de la Sierra Nevada del Cocuy, Colombia a partir de la clasificación de imágenes multisensor. Boletín De Geología, 44(1), 49–73. https://doi.org/10.18273/revbol.v44n1-2022002

Altmetrics

Resumen

Los glaciares andinos representan una de las fuentes principales del recurso hídrico en Suramérica y durante las últimas décadas se han reducido significativamente como producto del cambio climático y la variabilidad climática. En los Andes colombianos, el pico nevado más extenso corresponde a la Sierra Nevada del Cocuy (SRC), un cordón montañoso localizado al noreste de la Cordillera Oriental con presencia de nieves perpetuas en alturas que oscilan aproximadamente entre los 4800 y los 5345 metros sobre el nivel del mar (msnm). A partir de imágenes satelitales de Landsat-4 (1987), Landsat-5 (1991, 1997, 2009), Landsat-7 (2000, 2003), Landsat-8 (2014, 2016, 2017), y Sentinel-2 (2019, 2021) se realizó una clasificación orientada a píxel usando el software PCI Geomatics, en la cual se definieron 4 tipos de cobertura: área glaciar, suelo-roca, vegetación y agua. Para la validación de exactitud (accuracy) fueron utilizadas como datos de referencia, imágenes satelitales de alta resolución espacial (Google Earth ~1,0 m y Planet’s high-resolution, analysis-ready mosaics of the world’s tropics ~4,7 m) y puntos de control de campo. Los valores de exactitud global (todas las coberturas) oscilaron entre 86-99%, con una exactitud para la cobertura de área glaciar entre 97-100%. La disminución de dicha área es de 1099,59 ha en un lapso de 34 años (1987-2021). Este análisis reveló que el área glaciar disminuyó aproximadamente en un 37,92% con respecto a la primera escena (1987). Según dicha tendencia, el glaciar de la SRC se extinguiría para el año 2048. La tasa de retroceso glaciar está influenciada principalmente por factores relacionados con el calentamiento global como lo son el aumento de la temperatura media anual y la disminución en las tasas de precipitación, y factores de variabilidad climática como el fenómeno de El Niño.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Ancizar, M. (1955). La Sierra Nevada de Güicán, Cocuy o Chita. Boletín de la Sociedad Geográfica de Colombia, 13(45-46).
  2. Andreassen, L.; Moholdt, G.; Kääb, A.; Messerli, A.; Nagy, T.; Havstad, S. (2021). Monitoring glaciers in mainland Norway and Svalbard using Sentinel. Norwegian Water Resources and Energy Directorate (NVE).
  3. Anderson, E.; Marengo, J.; Villalba, R.; Halloy S.; Young, B.; Cordero, D.; Gast, F.; Jaimes, E.; Ruiz, D. (2011). Consequences of climate change for ecosystems and ecosystem services in the Tropical Andes. In: S. Herzog, R. Martinez, P. Jørgensen, H. Tiessen (eds.). Climate change and biodiversity in the Tropical Andes (pp. 1-19). Inter-American Institute for Global Change Research.
  4. Bautista, W.; Correa, H. (2018). Dinámica de cambio para el glaciar nevado el Cocuy en Colombia. Propuesta metodológica que evalúa el comportamiento y evolución a partir de teledetección y modelación de variables climatológicas para los periodos (1987 – 1997 – 2009 – 2015). Tesis, Universidad Distrital Francisco José de Caldas, Bogotá, Colombia.
  5. Boretti, A. (2020). The European colonization of the Americas as an explanation of the Little Ice Age. Journal of Archaeological Science: Reports, 29. https://doi.org/10.1016/j.jasrep.2019.102132
  6. Carey, M. (2014). Glaciares, cambio climático y desastres naturales. Ciencia y sociedad en el Perú, Institut Français d’études Andines - IFEA, Instituto de Estudios Peruanos.
  7. Ceballos, J.; Euscategui, C.; Ramírez, J.; Cañon, M.; Huggel, C.; Haeberli, W.; Machguth, H. (2006). Fast shrinkage of tropical glaciers in Colombia. Annals of Glaciology, 43, 194-201. https://doi.org/10.3189/172756406781812429
  8. Ceballos, J.; Tobón, E.; Arias, M.; Carvajal, J.; López, O.; Buitrago, V.; Valderrama, J.; Ramírez, J. (2010). Glaciares Santa Isabel y el Cocuy (Colombia): Seguimiento a su dinámica durante el período 2006-2008. En: C. López-Arenas, J. Ramírez-Cadena (eds.). Glaciares, nieves y hielos de América Latina: Cambio climático y amenazas (pp. 91-114). INGEOMINAS.
  9. Congalton, R.; Green, K. (2008). Assessing the accuracy of remotely sensed data: Principles and Practices. 2nd ed. CRC Press Taylor & Francis Group.
  10. Cooper, M.; Addison, F.; Alvarez, R.; Coral, M.; Graham, R.; Hayward, A.; Howe, S.; Martinez, J.; Naar, J.; Peñas, R.; Pulham, A.;Taborda, A. (1995). Basin development and tectonic history of the Llanos Basin, Eastern Cordillera, and Middle Magdalena Valley, Colombia. AAPG Bulletin, 79(10), 1421-1443. https://doi.org/10.1306/7834D9F4-1721-11D7-8645000102C1865D
  11. Domine, F.; Salvatori, R.; Legagneux, L.; Salzano, R.; Fily, M.; Casacchia, R. (2006). Correlation between the specific surface area and the short wave infrared (SWIR) reflectance of snow. Cold Regions Science and Technology, 46(1), 60-68. https://doi.org/10.1016/j.coldregions.2006.06.002
  12. Dong, C. (2018). Remote sensing, hydrological modeling and in situ observations in snow cover research: a review. Journal of Hydrology, 561, 573-583. https://doi.org/10.1016/j.jhydrol.2018.04.027
  13. Dozier, J. (1989). Spectral signature of alpine snow cover from the Landsat thematic mapper. Remote Sensing of Environment, 28, 9-22. https://doi.org/10.1016/0034-4257(89)90101-6
  14. Ducrot, D.; Masse, A.; Marais-Sicre, C.; Dejoux, J.; Baup, F. (2010). Multisensor and multitemporal image fusion methods to improve remote sensing image classification. Centre d’Etudes Spatiales de La Biosphère. Valencia, Spain. https://doi.org/10.13140/2.1.2607.0084
  15. Etayo, F.; Renzoni, G.; Barrero, D. (1969). Contornos sucesivos del mar Cretáceo en Colombia. I Congreso Colombiano de Geología, Bogotá.
  16. Euscategui, C. (2002). Incidencia de las variaciones del brillo solar en la dinámica glaciar del volcán nevado Santa Isabel (Cordillera Central, Colombia). Bogotá, Meteorología Colombiana.
  17. Fabre, A. (1981). Geología regional de la Sierra Nevada del Cocuy de la Plancha 137 El Cocuy. Bogotá. INGEOMINAS.
  18. Fabre, A.; Osorio, M.; Vargas, R. (1984). Geología de la Plancha 153 Chita. Bogotá. INGEOMINAS.
  19. Fabre, A.; Osorio, M.; Vargas, R. (1985). Geología de la Plancha 137 Cocuy. Bogotá. INGEOMINAS.
  20. Feo, O.; Solano, E.; Beingolea, L.; Aparicio, M.; Villagra, M.; Prieto, M.; García, J.; Jiménez, P.; Betancourt, O.; Aguilar, M.; Beckmann, J.; Gastañaga, M.; Llanos-Cuentas, A.; Osorio, A.; Silveti, R. (2009). Cambio climático y salud en la región andina. Revista Peruana de Medicina Experimental y Salud Pública, 26(1), 83-92.
  21. Florez, A. (1991). La Sierra Nevada del Cocuy, Chita o Güicán. EPG-Geografia, 1(2), 7-18.
  22. Foody, G. (2002). Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80(1), 185-201. https://doi.org/10.1016/S0034-4257(01)00295-4
  23. García, M.; Piñeros, A.; Bernal, F.; Ardila, E. (2012). Variabilidad climática, cambio climático y el recurso hídrico en Colombia. Revista de Ingeniería, 36, 60-64.
  24. Google Earth. (2020). Google Earth. https://earth.google.com/web
  25. Guillen, J.; Santiago, J.; Soria, M. (2004). Estudio multitemporal del retroceso glaciar a través de imágenes de sensores remotos y SIG en la Sierra Nevada del Cocuy, Cordillera Oriental de Colombia para el periodo 1960-2003. Tesis, Universidad Distrital Francisco José de Caldas-IGAC, Bogotá, Colombia.
  26. Guiot, J.; de Vernal, A. (2011). Is spatial autocorrelation introducing biases in the apparent accuracy of paleoclimatic reconstructions? Quaternary Science Reviews, 30(15-16), 1965-1972. https://doi.org/10.1016/j.quascirev.2011.04.022
  27. Gutzler D.; Preston J. (1997). Evidence for a relationship between spring snow cover in North America and summer rainfall in New Mexico. Geophysical Research Letters, 24(17), 2207-2210. https://doi.org/10.1029/97GL02099
  28. Härer, S.; Bernhardt, M.; Siebers, M.; Schulz, K. (2018). On the need for a time- and location- dependent estimation of the NDSI threshold value for reducing existing uncertainties in snow cover maps at different scales. The Cryosphere, 12(5), 1629-1642. https://doi.org/10.5194/tc-12-1629-2018
  29. Herrera, G.; Ruiz, J. (2008). Retroceso glaciar en la Sierra Nevada del Cocuy, Boyacá – Colombia, 1986-2007. Perspectiva Geográfica, 13, 27-36. https://doi.org/10.19053/01233769.1710
  30. Hoyos-Patiño, F. (1998). Glaciers of Colombia. In: R. Williams, J. Ferrigno (eds.). Satellite image atlas of glaciers of the world - South America (pp. 11-30). United States Geological Survey Professional Paper.
  31. IDEAM. (2001). Los glaciares colombianos, expresión del cambio climático global.
  32. IDEAM. (2007). Modelo institucional del IDEAM sobre el efecto climático de los fenómenos El Niño y La Niña en Colombia. Bogotá, Instituto de Hidrología, Meteorología y Estudios Ambientales.
  33. IDEAM. (2010a). Atlas climatológico de Colombia. http://atlas.ideam.gov.co/visorAtlasClimatologico.html
  34. IDEAM. (2010b). Informe de actividades glaciológicas: Sierra Nevada de El Cocuy y volcán nevado Santa Isabel Colombia. Bogotá, Instituto de Hidrología, Meteorología y Estudios Ambientales.
  35. IDEAM. (2012). Glaciares de Colombia, más que montañas con hielo.
  36. IDEAM. (2019). Sierra Nevada El Cocuy o Güicán. http://www.ideam.gov.co/web/ecosistemas/sierra-nevada-cocuy-Güicán
  37. Kaser, G.; Georges, C. (1999). On the mass balance of low latitude glaciers with particular consideration of the Peruvian Cordillera Blanca. Geografiska Annaler: Series A, Physical Geography, 81(4), 643-651. https://doi.org/10.1111/1468-0459.00092
  38. Knight, P. (1999). Glaciers. Stanley Thornes (Publishers) Ltd.
  39. König, M; Winther, J.; Isaksson, E. (2001). Measuring snow and glacier ice properties from satellite. Reviews of Geophysics, 39(1), 1-27. https://doi.org/10.1029/1999RG000076
  40. Li, J.; Roy, A. (2017). A global analysis of Sentinel-2A, Sentinel-2B and Landsat-8 data revisit intervals and implications for terrestrial monitoring. Remote Sensing, 9(9). https://doi.org/10.3390/rs9090902
  41. López-Moreno, J.; Ceballos, J.; Rojas-Heredia, F.; Zabalza-Martinez, F.; Vidaller, I.; Revuelto, J.; Alonso-González, E.; Morán-Tejada, E.; García-Ruiz, J. (2020). Topographic control of glacier changes since the end of the Little Ice Age in the Sierra Nevada de Santa Marta mountains, Colombia. Journal of South American Earth Sciences, 104. https://doi.org/10.1016/j.jsames.2020.102803
  42. Mark, B. (2008). Tracing tropical Andean glaciers over space and time: some lessons and transdisciplinary implications. Global and Planetary Change, 60(1-2), 101-114. https://doi.org/10.1016/j.gloplacha.2006.07.032
  43. Matthews, J.; Briffa, K. (2005). The ‘Little Ice Age’: re‐evaluation of an evolving concept. Geografiska Annaler: Series A, Physical Geography, 87(1), 17-36. https://doi.org/10.1111/j.0435-3676.2005.00242.x
  44. Metsämäki, S.; Pulliainen, J.; Salminen, M.; Luojus, K.; Wiesmann, A.; Solberg, R.; Böttcher, Kristin.; Hiltunen, M.; Ripper, E. (2015). Introduction to GlobSnow snow extent products with considerations for accuracy assessment. Remote Sensing of Environment, 156, 96-108. https://doi.org/10.1016/j.rse.2014.09.018
  45. Morris, J.; Poole, A.; Klein, A. (2006). Retreat of tropical glaciers in Colombia and Venezuela from 1984 to 2004 as measured from ASTER and Landsat images. 63rd Eastern Snow Conference. Newark, Delaware.
  46. Muñoz, F.; Ariano, R.; Buitrago, V.; Reyes, M.; Carvajal, J.; Valderrama, J.; Valderrama, R.; Gutierrez, R.; Blanco, M.; Suescun, J.; Navarrete, S.; Trujillo, M.; Aguilar, C.; Ospina, M.; Peñalosa, C.; Uribe, D.; Martinez, J. (2005). Plan de manejo 2005-2009 Parque Nacional Natural El Cocuy. El Cocuy, Sácama, Tame: Parques Nacionales Naturales de Colombia.
  47. Nolin, A. (2010). Recent advances in remote sensing of seasonal snow. Journal of Glaciology, 56(200), 1141-1150. https://doi.org/10.3189/002214311796406077
  48. Null, J. (2021). El Niño and La Niña years and intensities. Golden Gate Weather Services. https://ggweather.com/enso/oni.htm
  49. Painter, T.; Roberts, D.; Green, R.; Dozier, J. (1998). The effect of grain size on spectral mixture analysis of snow-covered area from AVIRIS data. Remote Sensing of Environment, 65(3), 320-332. https://doi.org/10.1016/S0034-4257(98)00041-8
  50. Peña, J. (2015). Análisis multitemporal del retroceso glaciar de la Sierra Nevada del Cocuy ubicada en los departamentos de Boyacá y Arauca entre los años 1992, 2003 y 2014. Tesis, Universidad Militar Nueva Granada, Bogotá, Colombia.
  51. Planet (2020). Planet. https://www.planet.com
  52. Pontius, R.; Millones, M. (2011). Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. International Journal of Remote Sensing, 32(15), 4407-4429. https://doi.org/10.1080/01431161.2011.552923
  53. Poveda, G.; Waylen, P.; Pulwarty, R. (2006). Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica. Palaeogeography, Palaeoclimatology, Palaeoecology, 234(1), 3-27. https://doi.org/10.1016/j.palaeo.2005.10.031
  54. Quintero, J. (2018). Cálculo de retroceso para los glaciares colombianos por medio de imágenes satelitales Sentinel 2 y MDT para el 2016 - 2017. Tesis, Universidad de Manizales, Manizales, Colombia.
  55. Rabatel, A.; Jomelli, V.; Naveau, P.; Francou, B.; Grancher, D. (2005). Dating of Little Ice Age glacier fluctuations in the tropical Andes: Charquini glaciers, Bolivia, 16° S. Comptes Rendus Geoscience, 337(15), 1311-1322. https://doi.org/10.1016/j.crte.2005.07.009
  56. Rabatel, A.; Francou, B.; Soruco, A.; Gomez, J.; Cáceres, B.; Ceballos, J.; Basantes, R.; Vuille, M.; Sicart, J.; Huggel, C.; Scheel, M.; Lejeune, Y.; Arnaud, Y.; Collet, M.; Condom, T.; Consoli, G.; Favier, V.; Jomelli, V.; Galarraga, R.; Ginot, P.; Maisincho, L.; Mendoza, J.; Ménégoz, M.; Ramirez, E.; Ribstein, P.; Suarez, W.; Villacis, M.; Wagnon, P. (2013). Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. The Cryosphere, 7(1), 81-102. https://doi.org/10.5194/tc-7-81-2013
  57. Rapp, D. (2014). Assessing climate change: Temperatures, solar radiation and heat balance. Springer Cham Heidelberg. https://doi.org/10.1007/978-3-319-00455-6
  58. Rekowsky, I.; Bremer, U.; Veettil, B. (2018). Variações de área das geleiras da Colômbia e da Venezuela entre 1985 e 2015 com dados de sensoriamento remoto. Geociências, 37(3), 569-581. https://doi.org/10.5016/geociencias.v37i3.11946
  59. Rodrigues, S.; Souza-Filho, P. (2011). Use of multi-sensor data to identify and map tropical coastal wetlands in the Amazon of Northern Brazil. Wetlands, 31(1), 11-23. https://doi.org/10.1007/s13157-010-0135-6
  60. Rodríguez, J. (2015). Análisis de la distribución espacial de la precipitación máxima en 24 horas en el Parque Nacional Natural El Cocuy. Tesis, Universidad Militar Nueva Granada, Bogotá, Colombia.
  61. Rowan, A. (2017). The ‘Little Ice Age’ in the Himalaya: A review of glacier advance driven by Northern Hemisphere temperature change. The Holocene, 27(2), 292-308. https://doi.org/10.1177/0959683616658530
  62. Santos, D.; Souza‐Filho, P.; Nascimento, W.; Cardoso, G.; Santos, J. (2020). Land cover change, landscape degradation, and restoration along a railway line in the Amazon biome, Brazil. Land Degradation & Development, 31(15), 2033-2046. https://doi.org/10.1002/ldr.3514
  63. Silva, G. (2010). Tipos y subtipos climáticos de Venezuela. Tesis, Universidad de los Andes, Merida, Venezuela.
  64. Singh, D.; Thakur, P.; Naithani, B.; Kaushik, S. (2020). Quantifying the sensitivity of band ratio methods for clean glacier ice mapping. Spatial Information Research, 29(3), 281-295. https://doi.org/10.1007/s41324-020-00352-8
  65. Sood, V.; Gusain, H.; Gupta, S.; Taloor, A.; Singh, S. (2021). Detection of snow/ice cover changes using subpixel-based change detection approach over Chhota-Shigri glacier, Western Himalaya, India. Quaternary International, 575-576, 204-212. https://doi.org/10.1016/j.quaint.2020.05.016
  66. Souza-Filho, P.; Nascimento, W.; Santos, D.; Weber, E.; Silva, R.; Siqueira, J. (2018). A GEOBIA approach for multitemporal land-cover and land-use change analysis in a tropical watershed in the Southeastern Amazon. Remote Sensing, 10(11). https://doi.org/10.3390/rs10111683
  67. Valdez-Cepeda, R.; Hernández-Ramírez, D.; Mendoza, B.; Valdés-Galicia, J.; Maravilla, D. (2003). Fractality of monthly extreme minimum temperature. Fractals, 11(2), 137-144. https://doi.org/10.1142/S0218348X0300163X
  68. Varade, D.; Maurya, A.; Sure, A.; Dikshit, O. (2017). Supervised classification of snow cover using hyperspectral imagery. International Conference on Emerging Trends in Computing and Communication Technologies, Dehradun, India. https://doi.org/10.1109/ICETCCT.2017.8280302
  69. Veettil, B. (2017). Identificação da influência de El Niño – oscilação sul e oscilação decenal do Pacífico sobre as geleiras andinas tropicais usando sensoriamento remoto e parâmetros climáticos. Tese, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil.
  70. Veettil, B.; Kamp, U. (2019). Global disappearance of tropical mountain glaciers: observations, causes, and challenges. Geosciences, 9(5), 196. https://doi.org/10.3390/geosciences9050196
  71. Waliser, D.; Jiang, X. (2015). Tropical meteorology and climate, Intertropical Convergence Zone. In: G. North, J. Pyle, F. Zhang (eds.). Encyclopedia of atmospheric sciences (pp. 121-131). 2nd ed. Academic Press. https://doi.org/10.1016/B978-0-12-382225-3.00417-5
  72. Wang, X.; Wang, J.; Jiang, Z.; Li, H.; Hao, X. (2015). An effective method for snow-cover mapping of dense coniferous forests in the Upper Heihe River Basin using Landsat operational land imager data. Remote Sensing, 7(12), 17246-17257. https://doi.org/10.3390/rs71215882
  73. Wang, Y.; Huang, X.; Liang, H.; Sun, Y.; Feng, Q.; Liang, T. (2018). Tracking snow variations in the Northern Hemisphere using multi-source remote sensing data (2000-2015). Remote Sensing, 10(1). https://doi.org/10.3390/rs10010136
  74. Wulder, M.; Loveland, T.; Roy, D.; Crawford, C.; Masek, J.; Woodcock, C.; Allen, R.; Anderson, M.; Belward, A.; Cohen, W.; Dwyer, J.; Erb, A.; Gao, F.; Griffiths, P.; Helder, D.; Hermosilla, T.; Hipple, J.; Hostert, P.; Hughes, M.; Huntington, J.; Johnson, D.; Kennedy, R.; Kilic, A.; Li, Z.; Lymburner, L.; McCorkel, J.; Pahlevan, N.; Scambos, T.; Schaaf, C.; Schott, J.; Sheng, Y.; Storey, J.; Vermote, E.; Vogelmann, J.; White, J.; Wynne, R.; Zhu, Z. (2019). Current status of Landsat program, science, and applications. Remote Sensing Environment, 225, 127-147. https://doi.org/10.1016/j.rse.2019.02.015
  75. Xiao, X.; Shen, Z.; Qin, X. (2001). Assessing the potential of vegetation sensor data for mapping snow and ice cover: A Normalized Difference Snow and Ice Index. International Journal of Remote Sensing, 22(13), 2479-2487. https://doi.org/10.1080/01431160119766
  76. Yan, Y. (2005). Intertropical Convergence Zone (ITCZ). In: J. Oliver (ed.). Encyclopedia of world climatology (pp. 429-432). Springer, Dordrecht. https://doi.org/10.1007/1-4020-3266-8_110
  77. Zhang, M.; Zhao, H.; Chen, F.; Zeng, J. (2020). Evaluation of effective spectral features for glacial lake mapping by using Landsat-8 OLI imagery. Journal of Mountain Science, 17(11), 2707-2723. https://doi.org/10.1007/s11629-020-6255-4