Vol. 44 Núm. 3 (2022): Boletín de Geología
Artículos científicos

Variación espacio-temporal del valor b en el Volcán Cerro Machín, Colombia

John Makario Londoño
Universidad Católica de Manizales
Biografía

Publicado 2022-10-26

Palabras clave

  • Dique,
  • Silo,
  • Cambios geoquímicos,
  • Sismicidad,
  • Intrusión magmática,
  • Deformación
  • ...Más
    Menos

Cómo citar

Londoño, J. M. (2022). Variación espacio-temporal del valor b en el Volcán Cerro Machín, Colombia. Boletín De Geología, 44(3), 143–158. https://doi.org/10.18273/revbol.v44n3-2022006

Altmetrics

Resumen

Se llevó a cabo un estudio de la variación espacio-temporal del valor b de la relación frecuencia-magnitud de sismos ocurridos en el Volcán Cerro Machín (VCM), Colombia, para el período 2007-2020. Se pudo establecer que el valor b presenta variaciones espaciales caracterizadas por valores altos (1,1-1,3) en la parte superficial del volcán, debajo del domo principal y hasta una profundidad de 1 km. Entre 1 y 6 km de profundidad, se observaron valores normales a bajos (0,8-0,6). Bajo el domo Tapias, entre 8 y 13 km de profundidad, se observaron valores altos de b (1,1-1,3). Estos valores anómalos indicarían zonas de circulación de fluidos hidrotermales en la parte superficial y posibles reservorios de magma en la parte más profunda del VCM. Adicionalmente, se observaron variaciones temporales del valor b; se destacan tres cambios importantes, relacionados con variaciones en la actividad del VCM: el primero, ocurrido en noviembre 2008, se asoció con un enjambre al NE y E del domo principal (3-5 km de profundidad); el segundo, ocurrido en agosto-diciembre 2010, se asoció con la presencia de sismicidad profunda (12-18 km) a unos 8 km al SE del domo principal, y el tercero, ocurrido en febrero de 2018, se asoció con un enjambre sísmico (3-5 km de profundidad) al SW del domo principal. Estos tres cambios se interpretan como posibles intrusiones de pulsos de magma, asociadas a un dique o silo superficial (<4 km de profundidad) y a una entrada de magma a mayores profundidades (>15 km). Algunos de estos cambios en el valor b estuvieron asociados con cambios geoquímicos o de deformación de la superficie. Los resultados de este estudio muestran que el cálculo rutinario del valor-b sirve como herramienta de monitoreo volcánico para el VCM.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Aki, K. (1965). Maximum Likelihood Estimate of b in the formula logN=a-bM and its confidence limits. Bulletin of the Earthquake Research Institute, 43, 237-239.
  2. Bender, B. (1983). Maximum likelihood estimation of b values for magnitude grouped data. Bulletin of Seismological Society of America, 73(3), 831-851. https://doi.org/10.1785/BSSA0730030831
  3. Bonaccorso, A.; Giampiccolo, E. (2020). Balance between deformation and seismic energy release: The Dec 2018 ‘Double-Dike’ intrusion at Mt. Etna. Frontiers in Earth Science, 8, 583815. https://doi.org/10.3389/feart.2020.583815
  4. Cepeda, H.; Murcia, A. (2000). Atlas de amenaza volcánica en Colombia. INGEOMINAS. Publicación especial, 119 p.
  5. Chen, J.; Zhu, S. (2020). Spatial and temporal b-value precursors preceding the 2008 Wenchuan, China, earthquake (Mw = 7.9): implications for earthquake prediction. Geomatics, Natural Hazards and Risk, 11(1), 1196-1211. https://doi.org/10.1080/19475705.2020.1784297
  6. Chiba, K.; Shimizu, H. (2018). Spatial and temporal distributions of b-value in and around Shinmoe-dake, Kirishima volcano, Japan. Earth, Planets and Space, 70(1), 122. https://doi.org/10.1186/s40623-018-0892-7
  7. Enescu, B.; Ito, K. (2001). Some premonitory phenomena of the 1995 Hyogo-Ken Nanbu (Kobe) earthquake: seismicity, b-value and fractal dimension. Tectonophysics, 338(3-4), 297-314. https://doi.org/10.1016/S0040-1951(01)00085-3
  8. Gutenberg, B.; Richter, C.F. (1954). Seismicity of the Earth and Associated Phenomena. Princeton University Press.
  9. INGEOMINAS. (2008). Boletín semestral de actividad registrada por los volcanes activos del Complejo Volcánico Cerro Machín – Cerro Bravo. Diciembre de 2008. Informe interno.
  10. Inguaggiato, S.; Londoño, J.M.; Chacón, Z.; Liotta, M.; Gil, E.; Alzate, D. (2017). The hydrothermal system of Cerro Machín volcano (Colombia): New magmatic signals observed during 2011-2013. Chemical Geology, 469, 60-68. https://doi.org/10.1016/j.chemgeo.2016.12.020
  11. Koike, M.; Nakamichi, H. (2021). Dike Inflation Process Beneath Sakurajima Volcano, Japan, During the Earthquake Swarm of August 15, 2015. Frontiers in Earth Science, 8, 600223. https://doi.org/10.3389/feart.2020.600223
  12. Lee, W.; Valdez, C. (1985). HYPO71PC; a personal computer version of the HYPO71 earthquake location program. USGS, Open-File Report, 85-749, 1-35. https://doi.org/10.3133/ofr85749
  13. Londoño, J.M. (2004). Actividad sísmica del Volcán Cerro Machín. I Congreso Colombiano de Sismología, Armenia, Colombia.
  14. Londoño, J.M. (2012). Tomografía sísmica 3D del Volcán Cerro Machín. Informe Interno, Servicio Geológico Colombiano.
  15. Londoño, J.M.; Rodríguez, S.P. (2013). Mapeo tridimensional del valor b en el Volcán Nevado del Ruíz, Colombia. Ventana Informática, 29, 129-144. https://doi.org/10.30554/ventanainform.29.249.2013
  16. Londoño, J.M. (2016). Definición de fórmulas de magnitud local para el área del Complejo volcánico Cerro Bravo – Cerro Machín, Colombia. Servicio Geológico Colombiano. Informe interno, 16 p.
  17. Mallika, K.; Gupta, H.; Shashidhar, D.; Purnachandra, N.; Yadav, A.; Rohilla, S.; Satyanarayana, H.V.S.; Srinagesh, D. (2013). Temporal variation of b value associated with M ∼4 earthquakes in the reservoir-triggered seismic environment of the Koyna–Warna region, Western India. Journal of Seismology, 17(1), 189-195. https://doi.org/10.1007/s10950-012-9318-3
  18. McNutt, S.R. (2005). Volcanic seismology. Annual Review of Earth Planet Sciences, 33, 461-491. https://doi.org/10.1146/annurev.earth.33.092203.122459
  19. Méndez, R.A.; Cortés, G.P.; Cepeda, H. (2002). Evaluación de la amenaza potencial del Volcán Cerro Machín. Memoria explicativa INGEOMINAS. 10 p.
  20. Mignan, A.; Woessner, J. (2012). Estimating the magnitude of completeness for earthquake catalogs. Community Online Resource for Statistical Seismicity Analysis. https://doi.org/10.5078/corssa-00180805
  21. Morishita, Y.; Kobayashi, T.; Yarai, H. (2016). Three-dimensional deformation mapping of a dike intrusion event Sakurajima in 2015 by exploiting the right hand left-looking ALOS-2 INAR. Geophysical Research Letters, 43(9), 4197-4204. https://doi.org/10.1002/2016GL068293
  22. Nishimura, T.; Iguchi, M.; Hendrasto, M.; Aoyama, H.; Yamada, T.; Ripepe, M.; Genco, R. (2016). Magnitude-frequency distribution of volcanic explosion earthquakes. Earth, Planets and Space, 68(1), 125. https://doi.org/10.1186/s40623-016-0505-2
  23. Patanè, D.; Caltabiano, T.; Del Pezzo, E.; Gresta, S. (1992). Time variation of b and Qc at Mt. Etna (1981–1987). Physics of Earth and Planet International, 71(3-4), 137-140. https://doi.org/10.1016/0031-9201(92)90070-C
  24. Rueda, H.; Macias, J.L.; Siebe, C.; Cepeda, H.; Méndez, R.; Cortés, G. (2005). Holocene eruptions of Machin volcano: stratigraphy and eruptive dynamics. EOS Trans, American Geophysical Union, Fall Meeting. San Francisco, USA.
  25. Sánchez, J.J.; Gómez, D.M.; Torres, R.A.; Calvache, M.L.; Ortega, A.; Ponce, A.P.; Acevedo, A.P.; Gil-Cruz, F.; Londoño, J.M.; Rodríguez, S.P.; Patiño, J.deJ.; Bohórquez, P. (2005). Spatial mapping of the b-value at Galeras volcano, Colombia, using earthquakes recorded from 1995 to 2002. Earth Sciences Research Journal, 9(1), 30-36.
  26. Savage, J.C.; Cockerham, RS. (1984). Earthquake swarm in Long Valley Caldera, California, January 1983: evidence for dike inflation. Journal of Geophysical Research, 89(B10), 8315-8324. https://doi.org/10.1029/JB089iB10p08315
  27. Scholz, C.H. (1968). The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bulletin of the Seismolical Society of America, 58(1), 399-415. https://doi.org/10.1785/BSSA0580010399
  28. SGC (2018). Informe técnico-operativo de la actividad volcánica Segmento norte de Colombia. Informe interno.
  29. Shi, Y.; Bolt, B.A. (1982). The standard error of the magnitude-frequency b value. Bulletin of Seismological Society of America, 72(5), 1677-1687. https://doi.org/10.1785/BSSA0720051677
  30. Smith, W.D. (1986). Evidence for precursory changes in the frequency - magnitude b-value. Geophysical Journal International, 86(3), 815-838. https://doi.org/10.1111/j.1365-246X.1986.tb00662.x
  31. Tsukakoshi, Y.; Shimazaki, K. (2008). Decreased b-value prior to the M 6.2 Northern Miyagi, Japan, earthquake of 26 July 2003. Earth, Planets and Space, 60(9), 915-924. https://doi.org/10.1186/BF03352847
  32. Utsu, T. (1965). A method for determining the value of b in a formula logN=a-bM showing the magnitude frequency for earthquakes. Geophysics Bulletin of Hokkaido University, 13, 99-103.
  33. Utsu, T. (1999). Representation and Analysis of the Earthquake Size Distribution: A Historical Review and Some New Approaches. Pure and applied Geophysics, 155(2-4), 509-535. https://doi.org/10.1007/s000240050276
  34. Van Stiphout, T.; Zhuang, J.; Marsan, D. (2012). Seismicity declustering. Community Online Resource for Statistical Seismicity Analysis. https://doi.org/10.5078/corssa-52382934
  35. Warren, N.W.; Latham, G.V. (1970). An experimental study of thermally induced microfracturing and its relation to volcanic seismicity. Journal of Geophysical Research, 75(23), 4455-4464. https://doi.org/10.1029/jb075i023p04455
  36. Wiemer, S.; Wyss, M. (1997). Mapping the frequency-magnitude distribution in asperities: an improved technique to calculate recurrence times? Journal of Geophysical Research: Solid Earth, 102(B7), 15115-15128. https://doi.org/10.1029/97JB00726
  37. Wiemer, S.; McNutt, S.R.; Wyss, M. (1998). Temporal and three-dimensional spatial analysis of the frequency-magnitude distribution near Long Valley Caldera, California. Geophysical Journal International, 134(2), 409-421. https://doi.org/10.1046/j.1365-246x.1998.00561.x
  38. Wiemer, S.; Wyss, M. (2000). Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the western United States, and Japan. Bulletin of Seismological Society of America, 90(4), 859-869. https://doi.org/10.1785/0119990114
  39. Woessner, J.; Wiemer, S. (2005). Assessing the quality of earthquake catalogues: estimating the magnitude of completeness and its uncertainty. Bulletin of Seismological Society of America, 95(2), 684-698. https://doi.org/10.1785/0120040007
  40. Woods, J.; Winder, T.; White, R.S.; Brandsdóttir, B. (2019). Evolution of lateral dike intrusion revealed by relatively-relocated dike-induced earthquakes: the 2014-15 Bárðarbunga-Holuhraun rifting event, Iceland. Earth and Planetary Sciences Letters, 506, 53-63. https://doi.org/10.1016/j.epsl.2018.10.032
  41. Wyss, M.; Shimazaki, K.; Wiemer, S. (1997). Mapping active magma chambers by b values beneath the off-Ito volcano, Japan. Journal of Geophysical Research: Solid Earth, 102(B9), 20413-20422. https://doi.org/10.1029/97JB01074
  42. Wyss, M.; Klein, F.; Nagamine, K.; Wiemer, S. (2001). Anomalously high b-values in the South Flank of Kilauea volcano, Hawaii: evidence for the distribution of magma below Kilauea’s East rift zone. Journal of Volcanology and Geothermal Research, 106(1-2), 23-37. https://doi.org/10.1016/S0377-0273(00)00263-8
  43. Zheng, Y.; Zhou, S. (2014). The spatiotemporal variation of the b-value and its tectonic implications in North China. Earthquake Sciences, 27(3), 301-310. https://doi.org/10.1007/s11589-014-0086-8