Vol. 45 Núm. 3 (2023): Boletín de Geología
Artículos científicos

Modelo del entrampamiento de hidrocarburos mio-plioceno del Bloque Oritupano-Leona (Subcuenca de Maturín, Cuenca Oriental de Venezuela): una revisión

Eduardo A. Rossello
Universidad de Buenos Aires
Oscar R. López-Gamundí
P1Consultants
Marcos E. Mozetic
Consultor independiete

Publicado 2023-10-26

Palabras clave

  • Fallas de crecimiento,
  • Pliegues de arrastre,
  • Transcurrencia,
  • Trampas de hidrocarburos,
  • Tectosedimentación

Cómo citar

Rossello, E. A., López-Gamundí, O. R., & Mozetic, M. E. (2023). Modelo del entrampamiento de hidrocarburos mio-plioceno del Bloque Oritupano-Leona (Subcuenca de Maturín, Cuenca Oriental de Venezuela): una revisión. Boletín De Geología, 45(3), 95–118. https://doi.org/10.18273/revbol.v45n3-2023006

Altmetrics

Resumen

El Bloque Oritupano-Leona (BOL) está localizado en la prolífera Subcuenca de Maturín perteneciente a la Cuenca Oriental de Venezuela en el flanco sur de la plataforma de antepaís cercana al Río Orinoco. A partir de la interpretación sísmica disponible, se reconoce un modelo estructural 3D relacionado sintectónicamente con la secuencia del Mioceno Inferior-Plioceno a partir de tres sistemas de fallas de crecimiento formadas por segmentos subordinados en el Mioceno Inferior (17,3 Ma), Mioceno Medio (15,35 Ma) y Mioceno Superior-Plioceno. El estilo estructural exhibe fallas normales de rumbo E-O inclinadas al Norte (fallamiento sintético) o al Sur en contrapendiente regional (fallamiento antitético) conformando pilares tectónicos y pliegues de arrastre asociados afectados por fallas transpresivas dextrales de rumbo NE-SO inclinadas al NO con extremos solapados por propagación lateral y vertical. Los fallamientos generan ambientes propicios para el acomodamiento de volúmenes sinsedimentarios con potencias variables entre los tramos intermedios y centrales de los segmentos de fallas que contienen los principales entrampamientos de los niveles de las formaciones Oficina y Merecure, responsables de los recursos hidrocarburíferos del BOL. Las morfologías estructurales se vinculan con un escenario transtensivo dextral relacionado con un levantamiento flexural durante los tiempos Oligoceno-Mioceno por la traslación oriental de la placa Caribe a lo largo del límite septentrional de la placa Sudamérica. El presente análisis aporta criterios estructurales que contribuyen con la definición de estrategias para la exploración y desarrollo de objetivos exploratorios remanentes.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Aguasuelos Ingeniería (1991). Modernización de los datos geológicos en el frente de montaña de la Serranía del Interior del noreste de Venezuela. Informe preparado para Corpoven, S.A. por Stephan, J., Macsotay, O., Vivas, V., Beck, C., Renard, M., Saint-Marc, P., Muller, V.1, 185 p.
  2. Algar, S.; Erikson, J.P. (1995). Correlation of the Jurassic through Oligocene stratigraphic units of Trinidad and Northeastern Venezuela. International Geology Review, 37(4), 313-334. https://doi.org/10.1080/00206819509465406
  3. Allen, P.A.; Allen, J.R. (1990). Basin Analysis: Principles and Applications. Blackwell Scientific Publications.
  4. Anders, M.H.; Dawers, N.H.; Schaffler, L.E. (1992). Growth and linkage of normal faults. Geological Society of America, Abstracts with Programme 24, A156.
  5. Azálgara, C.; Flores, M. (2000a). Caracterización de Yacimientos de la Formación Oficina mediante Estratigrafía Secuencial, área Oritupano Central – Cuenca Oriental de Venezuela: Ejemplo de sedimentos siliciclásticos depositados en una Cuenca tipo Rampa. X Congreso Venezolano de Geofísica, Caracas, Venezuela.
  6. Azálgara, C.; Salas, D.; Ibáñez, G.; De Almeida, H. (2000b). Trampas de tipo pliegue de arrastre asociado a falla normal en la Fm. Oficina, área Oritupano-Leona, Cuenca Oriental de Venezuela. X Congreso Venezolano de Geofísica. Caracas.
  7. Barrios, F.; Iusco, G. (1997). Potencial hidrocarburífero en el Campo Las Piedritas, Cuenca Oriental de Venezuela. VI Simposio Bolivariano - Exploración Petrolera en las Cuencas Subandinas. Cartagena. https://doi.org/10.3997/2214-4609-pdb.117.080esp
  8. Bartok, P. (2003). The peripheral bulge of the interior Range of the Eastern Venezuela Basin and its impact on oil accumulations. In: C. Bartolini, R.T. Buffler, J.F. Blickwede (eds.). The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation and plate tectonics (pp. 925-936). AAPG, Memoir 79. Tulsa.
  9. Beaumont, E.A.; Foster, N.H. (2000). Structural Traps VIII. In: E.A. Beaumont, N.H. Foster (eds.). Treatise of Petroleum Geology, Atlas of oil and gas fields of the World (pp. 307-328). AAPG, Handbook Series.
  10. Blanc, P.; Connan, J. (1994). Preservation, degradation, and destruction of trapped oil. In: L.B. Magoon, W.G. Dow (eds.). The Petroleum system-from source to trap (pp. 237-247). AAPG, Memoir 60. https://doi.org/10.1306/M60585C14
  11. Calassou, C.J.; Larroque, C.; Mallavieille, J. (1993). Transfer zones of deformation in thrust wedges: an experimental study. Tectonophysics, 221(3- 4), 325-344. https://doi.org/10.1016/0040-1951(93)90165-G
  12. Cartwright, J.A.; Trudgill, B.D.; Mansfield, C.S. (1995). Fault growth by segment linkage: an explanation for scatter in maximum displacement and trace length data from the Canyonlands Grabens of SE Utah. Journal of Structural Geology, 17(9), 1319-1326. https://doi.org/10.1016/0191-8141(95)00033-A
  13. Cassani, F.; Gallango, O.; Talukdar, S.; Vallejos, C.; De Toni, B. (1988). Geoquímica orgánica de los crudos venezolanos. III Simposio Bolivariano - Exploración Petrolera en las Cuencas Subandinas, Caracas. https://doi.org/10.3997/2214-4609-pdb.114.023
  14. Chigne, N.; Russomano, F.; Sánchez, H.; Callejón, A.; Finn, A.; Escalona, N. (1993). Hydrocarbon generation and migration modelling, Eastern Venezuela Basin. AAPG /SVG International Congress and Exhibition, Caracas.
  15. Chigne, N.; Russomano, F.; Sánchez, H.; Callejón, A.; Finn, A.; Escalona, N. (1995). Hydrocarbon generation and migration modelling, Eastern Venezuela Basin. AAPG Bulletin, 79(8).
  16. Cobbold, P.R.; Davy, P.; Gapais, D.; Rossello, E.A.; Sadybakasov, E.; Thomas, J.C.; Tondji-Biyo, J.J.; de Urreiztieta, M. (1993). Sedimentary basins and crustal thickening. Sedimentary Geology, 86(1-2), 77-89. https://doi.org/10.1016/0037-0738(93)90134-Q
  17. Cobbold, P.R.; Rossello, E.A.; Roperch, P.; Arriagada, C.; Gómez, L.A.; Lima, C. (2007). Distribution, timing, and causes of Andean deformation across South America. In: A.C. Ries, R.W.H. Butler; R.H. Graham (eds.). Deformation of the Continental Crust: The Legacy of Mike Coward (pp. 321-343). Geological Society, London, Special Publications, 272. https://doi.org/10.1144/GSL.SP.2007.272.01.17
  18. Contreras, J.; Scholz, C.H.; King, G.P. (1997). A model of rift basin evolution constrained by first-order stratigraphic observations. Journal of Geophysical Research, 102(B4), 7673-7690. https://doi.org/10.1029/96JB03832
  19. Contreras, S.A.C.; de Castro, J.C. (2013). Cronoestratigrafia e zoneamento de reservatórios das formações Oficina e Merecure (Oligo-mioceno), campos Socororo e Budare da Bacia Oriental da Venezuela. Geociências, 32(2), 370-378.
  20. Corfield, G.S. (1948). Recent activities in Venezuela’s petroleum industry. Economic Geography, 24(2), 114-118. https://doi.org/10.2307/141718
  21. Cowie, P.A.; Scholz, C.H. (1992). Physical explanation for the displacement-length relationship of faults using a post-yield fracture mechanics model. Journal of Structural Geology, 14(10), 1133-1148. https://doi.org/10.1016/0191-8141(92)90065-5
  22. Dawers, N.H.; Anders, M.H. (1995). Displacement-length scaling and fault linkage. Journal of Structural Geology, 17(5), 607-614. https://doi.org/10.1016/0191-8141(94)00091-D
  23. Daza, J.; Prieto, R. (1990). Fallas de crecimiento en el área de Mapirito, Monagas Central. V Congreso Venezolano de Geofísica, Caracas.
  24. Di Croce, J.; Bally, A.W.; Vail, P. (1999). Sequence stratigraphy of the eastern Venezuelan basin. In: Mann, P. (ed.). Sedimentary Basins of the World (pp. 419-476). Chapter 16. Elsevier. https://doi.org/10.1016/S1874-5997(99)80050-1
  25. Eisbacher, G.H. (1996). Einführunh in die Tektonik, 2., neu bearbeitete und erweiterte Auflage. Ferdinand Enke Verlag, 367 pp. Stuttgart.
  26. Erlich, R.N.; Barrett, S.F. (1990). Cenozoic plate tectonic history of the northern Venezuela-Trinidad area. Tectonics, 9(1), 161-184. https://doi.org/10.1029/TC009i001p00161
  27. Erlich, R.N.; Barrett, S.F. (1992). Petroleum geology of the Eastern Venezuela Foreland basin. In: R.W. Macqueen, D.A. Leckie (eds.). Foreland basins and fold belts (pp. 341-362). AAPG, Memoir, 55. https://doi.org/10.1306/M55563C13
  28. Funes, D.; Itriago, J. (1994). Resolución de la sísmica en la exploración de acumulaciones estratigráficas en la Cuenca Oriental de Venezuela. VII Congreso Venezolano de Geofísica. Caracas.
  29. García, E.S. (1992). Uso de registros geofísicos de pozo en la determinación de modelos de segregación de hidrocarburos en el norte de Monagas. VI Congreso Venezolano de Geofísica. Caracas.
  30. Gawthorpe, R.L.; Leeder, M.R. (2000). Tectono-sedimentary evolution of active extensional basins. Basin Research, 12(3-4), 195-218. https://doi.org/10.1111/j.1365-2117.2000.00121.x
  31. George, R.P. Jr.; Socas, M.B. (1994). Pros and cons of five hypotheses of migration of oil to the eastern part of the Orinoco Oil Belt, Eastern Venezuela foreland basin. AAPG, Annual Convention, Official Program, 3: 154.
  32. González de Juana, C.; Iturralde de Arozena, J.M.; Picard Cadillat, X. (1980). Geología de Venezuela y de sus cuencas petrolíferas. Ediciones FONINVES. Caracas.
  33. Graf, C. (1998). Venezuelan petroleum potential outlook. AAPG Bulletin, 82, 10.
  34. Hardenbol, J.; Thierry, J.; Farley, M.B.; Jacquin, T.; de Graziansky, P.C.; Vail, P.R. (1998). Mesozoic-Cenozoic chronostratigraphic framework of European Basins. In: de Graziansky, P.C., J. Hardenbol, T. Jacquin, P.R. Vail (eds.). Mesozoic and Cenozoic Sequence stratigraphy of European Basins (pp. 100-135). Society for Sedimentary Geology, Spec. Public. https://doi.org/10.2110/pec.98.02.0003
  35. Hedberg, H.D.; Saas, L.C.; Funkhouser, H.J. (1947). Oil fields of Greater Oficina Area, Central Anzoategui, Venezuela. AAPG Bulletin, 31(12), 2089-2169. https://doi.org/10.1306/3D933A94-16B1-11D7-8645000102C1865D
  36. Isea, A. (1987). Geological synthesis of the Orinoco Oil Belt, Eastern Venezuela. Journal of Petroleum Geology, 10(2), 135-147. https://doi.org/10.1111/j.1747-5457.1987.tb00205.x
  37. James, K.H. (2000a). The Venezuelan hydrocarbon habitat, Part 1: Tectonics, structure, palaeogeography and source rocks. Journal of Petroleum Geology, 23(1), 5-53. https://doi.org/10.1111/j.1747-5457.2000.tb00483.x
  38. James, K.H. (2000b). The Venezuelan hydrocarbon habitat, Part 2: Hydrocarbon occurrences and generated-accumulated volumes. Journal of Petroleum Geology, 23(2), 133-164. https://doi.org/10.1111/j.1747-5457.2000.tb00488.x
  39. Larsen, P.H. (1988). Relay structures in a Lower Permian basement-involved extension system, East Greenland. Journal of Structural Geology, 10(1), 3-8. https://doi.org/10.1016/0191-8141(88)90122-8
  40. Lander, R.; González, A.; Fuentes, J.; Daal, J. (1993). Exploration of the Late Cretaceous and the Oligocene sequences underneath the Pirital Allochthonous block, Northern Monagas Area, Eastern Venezuela Basin. AAPG / SVG International Congress and Exhibition, Caracas.
  41. Laubscher, H.P. (1956). Structural and seismic deformations along normal faults in the Eastern Venezuelan Basin. Geophysics, 21(2), 368-387. https://doi.org/10.1190/1.1438239
  42. Leeder, M.R.; Gawthorpe, R.L. (1987). Sedimentary models for extensional tilt-block/half-graben basins. Geological Society, London, Special Publications, 28, 139-152. https://doi.org/10.1144/GSL.SP.1987.028.01.11
  43. Lugo, J.; Mann, P. (1995). Jurassic-Eocene tectonic evolution of Maracaibo Basin, Venezuela. In: A.J. Tankard, R. Suárez-Soruco, H.J. Welsink (eds.). Petroleum Basins of South America (pp. 699-725). AAPG, Memoir 62. https://doi.org/10.1306/M62593C38
  44. Lugo, J.; Audemard, F. (1997). Petroleum geology of Venezuela. AAPG, Short Course (April 5-6), Dallas, Texas, unpaginated.
  45. Macellari, C. (1995). Cenozoic sedimentation and tectonics of the Southwestern Caribbean pull-apart basin, Venezuela and Colombia. In: A.J. Tankard, R. Suárez-Soruco, H.J. Welsink (eds.). Petroleum Basins of South America (pp. 757-780). AAPG, Memoir 62. https://doi.org/10.1306/M62593C41
  46. Marchal, D.; Guiraud, M.; Rives, T.; Van den Driessche, J. (1998). Space and time propagation processes of normal faults. Geological Society, London, Special Publications, 147, 51-70. https://doi.org/10.1144/GSL.SP.1998.147.01.04
  47. Martínez, A.R. (1987). The Orinoco Oil Belt, Venezuela. Journal of Petroleum Geology, 10(2), 125-134. https://doi.org/10.1111/j.1747-5457.1987.tb00204.x
  48. Mencher, E.; Fichter, H.J.; Renz, H.H.; Wallis, W.E.; Renz, H.H.; Patterson, J.M.; Robie, R.H. (1953). Geology of Venezuela and its oil fields. AAPG Bulletin, 37(4), 690-777. https://doi.org/10.1306/5CEADCA1-16BB-11D7-8645000102C1865D
  49. Morley, C.K.; Nelson, R.A.; Patton, T.L.; Munn, S.G. (1990). Transfer zones in the East African Rift system and their relevance to hydrocarbon exploration in rifts. AAPG Bulletin, 74(8), 1234-1253. https://doi.org/10.1306/0C9B2475-1710-11D7-8645000102C1865D
  50. Noll, C.A.; Hall, M. (2006). Normal fault growth and its function on the control of sedimentation during basin formation: A case study from field exposures of the Upper Cambrian Owen Conglomerate, West Coast Range, western Tasmania, Australia. AAPG Bulletin, 90(10), 1609-1630. https://doi.org/10.1306/04270605145
  51. Parnaud, F.; Gou, Y.; Pascual, J.C.; Truskowski, I.; Gallango, O.; Passalacqua, H.; Roure, F. (1995). Petroleum geology of the central part of the eastern Venezuelan basin. In: A.J. Tankard, R. Suárez- Soruco, H.J. Welsink (eds.). Petroleum basins of South America (pp. 741-756). AAPG Memoir, Vol 62. https://doi.org/10.1306/M62593C40
  52. Peacock, D.C.; Sanderson, D.J. (1991). Displacements, segment linkage and relay ramps in normal faults zones. Journal of Structural Geology, 13(6), 721-733. https://doi.org/10.1016/0191-8141(91)90033-F
  53. Pindell, J.; Barret, S. (1991). Geological evolution of the Caribbean region: A plate-tectonic perspective. In: G. Dengo, J.E. Case (eds.). The Caribbean region (pp. 405-432). Geological Society of America, Vol. H. https://doi.org/10.1130/DNAG-GNA-H.405
  54. Porras, J.S.; Vallejo, E.L.; Marchal, D.; Selva, C. (2003). Extensional folding in the Eastern Venezuela Basin: Examples from fields of Oritupano-Leona Block. Search and Discovery Article #50003.
  55. Prieto, R.; Valdes, G. (1992). El Furrial Oil Field; a new giant in an old basin. In: M.T. Halbouty (ed.). Giant oil and gas fields of the decade 1978-1988 (pp.155-161). AAGP Memoir, 54. https://doi.org/10.1306/M54555C10
  56. Rabasso-Vidal, J. (1985). Sugerencias y analogías: Exploración de trampas estratigráficas en una cuenca petrolera madura, región de Anaco-Oficina. VI Congreso Geológico Venezolano, Caracas.
  57. Renz, H.H.; Alberding, H.; Dallmus, K.F.; Patterson, J.M.; Robie, R.H.; Weisbord, N.E.; Mas-Vall, J. (1958). The Eastern Venezuelan basin, in Habitat of oil, a symposium. AAPG, Special Publication, 551-600.
  58. Riedel, W. (1929). Zur Mechanik geologischer Bruscherscheinungen. Zentralblatt für Geologie und Paläontologie, Abh. 8, 354-368.
  59. Rossello, E.A. (2001). Sistemas Tectónicos transcurrentes: una síntesis de sus condiciones mecánicas y aplicaciones geoeconómicas. Asociación Geológica Argentina. Serie D: Publicación Especial N°5: 19-43.
  60. Rossello, E.A.; Osorio, J.A.; López-Isaza, S. (2022). El diapirismo argilocinético del Margen Caribeño Colombiano: una revisión de sus condicionantes sedimentarios aplicados a la exploración de hidrocarburos. Boletín de Geología, 44(1), 15-48. https://doi.org/10.18273/revbol.v44n1-2022001
  61. Salazar, L.J.; Ostos, M. (2005). Middle Miocene to Recent structural evolution of the Oritupano-Leona area, Maturín sub-basin, Eastern Venezuela Basin. 6th International Symposium on Andean Geodynamics, Barcelona, España.
  62. Salazar, L.; Rossello, E.A.; Kley, J. (2005). Análisis estructural y evidencias de transcurrencia en el Área de Oritupano-Leona. Sub-Cuenca de Maturín. Cuenca Oriental de Venezuela. IX Congreso Geológico Venezolano. Caracas, Venezuela.
  63. Schlische, R.W. (1991). Half-graben filling models: Implications for the evolution of continental extensional basins. Basin research, 3, 123-141.
  64. Schlische, R.W. (1995). Geometry and origin of fault-related folds in extensional settings. AAPG Bulletin, 79(11), 1661-1678. https://doi.org/10.1306/7834DE4A-1721-11D7-8645000102C1865D
  65. Stephan, J.; Mercier de Lepinay, B.; Calais, E.; Tardy, M.; Beck, C.; Carfantan, J.; Olivet, J.; Villa, J.; Bouyesse, P.; Mauffret, A.; Decourt, J. (1990). Paleodynamic maps of the Caribbean: 14 steps from Lias to present. Bulletin Société Géologique de France, 8 serie VI(6), 915-919.
  66. Talukdar, S.; Gallango, O.; Ruggiero, A. (1987). Generation and migration of oil in the Maturin Subbasin, Eastern Venezuela basin. Organic Geochemistry, 13(1-13), 537-547. https://doi.org/10.1016/0146-6380(88)90074-5
  67. Talukdar, S.; Dow, W.G.; Persad, K.M. (1990). Geochemistry of oils provides optimism for deeper exploration in Atlantic off Trinidad. Oil and Gas Journal, 12, 118-122.
  68. Talukdar, S. (1992). Hydrocarbon habitats of the Venezuelan basins. DGSI Report, Houston, Texas.
  69. Vail, P.R.; Mitchum, R.M. (1979). Global cycles of relative changes of sea level from seismic stratigraphy. In: J.S. Watkins, L. Montadert, P. Wood-Dickerson (ed.). Geological and Geophysical Investigations of Continental Margins (pp. 63-81). AAPG, Memoir 29. https://doi.org/10.1306/M29405C32
  70. Walsh, J.J.; Watterson, J. (1987). Distribution of cumulative displacement and seismic slip on a single normal fault surface. Journal of Structural Geology, 9(8), 1039-1046. https://doi.org/10.1016/0191-8141(87)90012-5