Vol. 46 Núm. 3 (2024): Boletín de Geología
Artículos científicos

Determinación de actividad tectónica reciente en el flanco occidental del Macizo de Santander (Colombia) a partir del análisis morfométrico

Daniel Moreno-Lozada
Wrocław University of Science and Technology
Biografía
Helbert García-Delgado
Syracuse University
Francisco Velandia
Universidad Industrial de Santander

Publicado 2024-11-28

Palabras clave

  • Falla de Bucaramanga,
  • Andes del Norte,
  • Asimetría de cuencas,
  • Frente montañoso,
  • Red de drenaje

Cómo citar

Moreno-Lozada, D., García-Delgado, H., & Velandia, F. (2024). Determinación de actividad tectónica reciente en el flanco occidental del Macizo de Santander (Colombia) a partir del análisis morfométrico. Boletín De Geología, 46(3), 69–103. https://doi.org/10.18273/revbol.v46n3-2024003

Altmetrics

Resumen

Hoy en día, gracias a la información espacial disponible y a la capacidad de procesamiento de datos, la geomorfología cuantitativa se ha convertido en una herramienta valiosa para evaluar la actividad tectónica reciente en áreas complejas estructuralmente como el Macizo de Santander, una región con baja densidad de datos sismológicos y de GPS, y escasos o nulos estudios de paleosismología, donde se hace necesario destacar los rasgos morfológicos asociados con la Falla de Bucaramanga y estructuras transversales con rumbo NE, para identificar patrones de deformación y entender su cinemática e interacción espacial y temporal. La evaluación de índices morfométricos en el margen occidental del macizo permitió realizar análisis de asimetría de cuencas de drenaje, del frente montañoso y de variaciones de la red de drenaje. Los resultados confirman una actividad tectónica significativa que genera basculamiento activo en algunos sectores asociados con fallas transversales NE, tasas de levantamiento empíricas que varían de 0,03 a 0,08 m/ka, así como rotación antihoraria de 16,5° de las cuencas hidrográficas, con lomos de presión que muestran propagación al SE a lo largo de la Falla de Bucaramanga.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Acosta, J.; Velandia, F.; Osorio, J.; Lonergan, L.; Mora, H. (2007). Strike‐slip deformation within the Colombian Andes. En: A.C. Ries, R.W. Butler, R.H. Graham (eds.). Deformation of the Continental Crust: The Legacy of Mike Coward (pp. 303‐319). Geological Society of London. Vol. 272.
  2. Audemard, F.A. (1993). Néotectonique, Sismotectonique et Aléa Sismique du Nord-Ouest du Vénézuela (Systême de failles d’Oca-Ancón). PhD Thesis, Université Montpellier II, Francia.
  3. Audemard, F.A. (1997). Holocene and historical earthquakes on the Boconó fault system, southern Venezuelan Andes: Trench confirmation. Journal of Geodynamics, 24(1-4), 155-167. https://doi.org/10.1016/S0264-3707(96)00037-3
  4. Audemard, F.A. (1998). Evolution Geodynamique de la Façade Nord Sud-americaine: nouveaux apports de l’Histoire Géologique du Bassin de Falcon, Venezuela. 3rd Geological Conference of the Geological Society of Trinidad and Tobago and the XIV Caribbean Geological Conference, Trinidad.
  5. Audemard, F.A. (1999). Morpho-structural expresión of active thrust fault systems in the humid tropical foothills of Colombia and Venezuela. Zeitschrift für Geomorphologie, 118(Supplementary Issue), 227-244.
  6. Audemard, F.A. (2002). Ruptura de los grandes sismos históricos venezolanos de los siglos XIX y XX, revelados por la sismicidad instrumental contemporánea. XI Congreso Venezolano de Geofísica, Caracas, Venezuela.
  7. Audemard, F.A. (2003). Geomorphic and geologic evidence of ongoing uplift and deformation in the Mérida Andes, Venezuela. Quaternary International, 101-102, 43-65. https://doi.org/10.1016/S1040-6182(02)00128-3
  8. Audemard, F.A. (2009a). Key issues on the post-Mesozoic southern Caribbean plate boundary. Geological Society, London, Special Publications, 328, 567-584. https://doi.org/10.1144/SP328.23
  9. Audemard, F.A. (2009b). Flexura Frontal Surandina, Venezuela (VE-07). En: Proyecto Mutinacional Andino. Geociencia para las comunidades andinas (ed.) Atlas de deformaciones cuaternarias de Los Andes (pp. 300-311). Publicación Geológica Multinacional.
  10. Audemard, F.A. (2014). Active block tectonics in and around the Caribbean: a review. En: M. Schmitz, F.A. Audemard, F. Urbani (eds.). The north-eastern limit of the South American Plate: Lithospheric structures from surface to the mantle (pp. 29‐78). Fundación Venezolana de Investigaciones Sismológicas.
  11. Audemard, F.E.; Audemard, F.A. (2002). Structure of the Mérida Andes, Venezuela: relations with the South America–Caribbean geodynamic interaction. Tectonophysics, 345(1-4), 299-327. https://doi.org/10.1016/S0040-1951(01)00218-9
  12. Audemard, F.A.; Romero, G.; Rendón, H.; Cano, V. (2005). Quaternary fault kinematics and stress tensors along the southern Caribbean from fault-slip data and focal mechanism solutions. Earth-Science Reviews, 69(3-4), 181-233. https://doi.org/10.1016/j.earscirev.2004.08.001
  13. Audemard, F.A.; Castilla, R. (2016). Present‐day stress tensors along the southern Caribbean plate boundary zone from inversion of focal mechanism solutions: A successful trial. Journal of South American Earth Sciences, 71, 309‐319. https://doi.org/10.1016/j.jsames.2016.06.005
  14. Audemard, F.A.; Mora-Páez, H.; Fonseca, H.A. (2021). Net right-lateral slip of the Eastern Frontal Fault System, North Andes Sliver, northwestern South America. Journal of South American Earth Sciences, 109, 103286. https://doi.org/10.1016/j.jsames.2021.103286
  15. Bishop, P. (1995). Drainage rearrangement by river capture, beheading and diversion. Progress in Physical Geography, 19, 449-473. https://doi.org/10.1177/030913339501900402
  16. Boinet, T.; Bourgois, J.; Mendoza, H.; Vargas, R. (1985). Le poinçon de Pamplona (Colombie): un jalon de la frontière méridionale de la plaque caraïbe. Bulletin de la Société Géologique de France, 1(3), 403‐413. https://doi.org/10.2113/gssgfbull.I.3.403
  17. Bull, W.B.; McFadden, L.D. (1977). Tectonic Geomorphology North and South of the Garlock Fault, California. 8th Annual Geomorphology Symposium, Binghamton, USA.
  18. Burbank, D.; Meigs, A.; Brozović, N. (1996). Interactions of growing folds and coeval depositional systems. Basin Research, 8(3), 199‐223. https://doi.org/10.1046/j.1365-2117.1996.00181.x
  19. Burbank, D.W.; McLean, J.K.; Bullen, M.; Abdrakhmatov, K.Y.; Miller, M.M. (1999). Partitioning of intermontane basins by thrust-related folding, Tien Shan, Kyrgyztan. Basisn Research, 11(1), 75‐92. https://doi.org/10.1046/j.1365-2117.1999.00086.x
  20. Castelltort, S.; Goren, L.; Willett, S.D.; Champagnac, J.D.; Herman, F.; Braun, L. (2012). River drainage patterns in the New Zealand Alps primarily controlled by plate tectonic strain. Nature Geoscience, 5(10), 744‐748. https://doi.org/10.1038/ngeo1582
  21. Colmenares, L.; Zoback, M. (2003). Stress field and seismotectonics of northern South America. Geology, 31, 721-724. https://doi.org/10.1130/G19409.1
  22. Cortés, M.; Angelier, J. (2005). Current states of stress in the northern Andes as indicated by focal mechanisms of earthquakes. Tectonophysics, 403(1-4), 29‐58. https://doi.org/10.1016/j.tecto.2005.03.020
  23. Cox, R.T. (1994). Analysis of drainage-basin symmetry as a rapid technique to identify areas of posible Quaternary tilt-block tectonics: an example from the Mississippi Embayment. GSA Bulletin, 106(5), 571-581. https://doi.org/10.1130/0016-7606(1994)106%3C0571:AODBSA%3E2.3.CO;2
  24. Cox, R.T.; Van Arsdale, R.B.; Harris, J.B. (2001). Identification of possible Quaternary deformation in the northeastern Mississippi Embayment using quantitative geomorphic analysis of drainage-basin asymmetry. GSA Bulletin, 113(5), 615-624. https://doi.org/10.1130/0016-7606(2001)113%3C0615:IOPQDI%3E2.0.CO;2
  25. Curray, J. (1956). The analysis of two‐dimensional oriented data. The Journal of Geology, 64(2), 117‐131. https://doi.org/10.1086/626329
  26. Diederix, H.; Hernández, C.; Torres, E.; Osorio, J.A.; Botero, P. (2009). Resultados preliminares del primer estudio paleosismológico a lo largo de la falla de Bucaramanga, Colombia. Ingeniería, Investigación y Desarrollo, 9(2), 18‐23.
  27. Forte, A.M.; Whipple, K.X. (2018). Short communication: The Topographic Analysis Kit (TAK) for TopoToolbox. Earth Surface Dynamics, 7(1), 87-95. https://doi.org/10.5194/esurf-2018-57
  28. Galvis, M.; Velandia, F.; Villamizar, N. (2014). Cartografía morfoestructural de la Falla de Bucaramanga, geometría lenticular a lo largo del valle del río Chicamocha en Santander – Colombia. XVII Congreso Peruano de Geología, Lima, Perú.
  29. García-Delgado, H.; Villamizar‐Escalante, N.; Bernet, M. (2019). Recent tectonic activity along the Bucaramanga Fault System (Chicamocha River Canyon, Eastern Cordillera of Colombia): a geomorphological approach. Zeitschrift für Geomorphologie, 62(3), 199‐215. https://doi.org/10.1127/zfg/2019/0630
  30. García-Delgado, H.; Machuca, S.; Velandia, F.; Audemard, F.A. (2020). Along‐strike variations in recent tectonic activity in the Santander Massif: New insights on landscape evolution in the Northern Andes. Journal of South American Earth Science, 98, 102472. https://doi.org/10.1016/j.jsames.2019.102472
  31. García-Delgado, H.; Velandia, F.; Bermúdez, M.A.; Audemard, F.A. (2022). The present-day tectonic regimes of the Colombian Andes and the role of slab geometry in intraplate seismicity. International Journal of Earth Sciences (Geol Rundsch), 111(7), 1-19. https://doi.org/10.1007/s00531-022-02227-9
  32. García-Delgado, H.; Schwanghart, W.; Hoke, G.; Guerrero, B.; Velandia, F. (2023). How erosional efficiency modulates landscape response to drainage reorganization: New empirical evidence from the Andes. Geomorphology, 440, 108893. https://doi.org/10.1016/j.geomorph.2023.108893
  33. Gardner, T.W.; Jorgensen, D.W.; Shuman, C.; Lemieux, C.R. (1987). Geomorphic and tectonic process rates: Effects of measured time interval. Geology, 15(3), 259-261. https://doi.org/10.1130/0091-7613(1987)15<259:GATPRE>2.0.CO;2
  34. Goren, L.; Castelltort, S.; Klinger, Y. (2015). Modes and rates of horizontal deformation from rotated river basins: application to the Dead Sea fault system in Lebanon. Geology, 43(9), 843‐846. https://doi.org/10.1130/G36841.1
  35. Guaita-González, C.M. (2015). Valoración de la tectónica y la erosión en la configuración neógena del frente de montaña andino entre los 28°30’ y los 29°15’S. Tesis de pregrado, Universidad de Chile, Chile.
  36. Guerit, L.; Dominguez, S.; Malavieille, J.; Castelltort, S. (2016). Deformation of an experimental drainage network in oblique collision. Tectonophysics, 693(Part B), 210‐222. https://doi.org/10.1016/j.tecto.2016.04.016
  37. Guerit, L.; Goren, L.; Dominguez, S.; Malavieille, J.; Castelltort, S. (2018). Landscape “stress” and reorganization from x‐maps: Insights from experimental drainage networks in oblique collision setting. Earth Surface Processes and Landforms, 43(15), 3152‐3163. https://doi.org/10.1002/esp.4477
  38. Hare, P.; Gardner, T. (1985). Geomorphic Indicators of Vertical Neotectonism along Converging Plate Margins, Nicoya Peninsula Costa Rica. 15th Annual Binghamton Geomorphology Symposium, Boston.
  39. Hargraves, R.B.; Shagam, R.; Vargas, R.; Rodriguez, G.I. (1984). Paleomagnetic results from rhyolites (Early Cretaceous?) and andesite dikes at two localities in the Ocaña area, northern Santander Massif, Colombia. En: W.E. Bonini, R.B. Hargraves, R. Shagam (eds.). The Caribbean–South American Plate Boundary and Regional Tectonics (pp. 299-302). Geological Society of America. https://doi.org/10.1130/MEM162-p299
  40. Jackson, J.; Norris, R.; Youngson, J. (1996). The structural evolution of active fault and fold systems in Central Otago, New Zealand: evidence revealed by drainage patterns. Journal of Structural Geology, 18(2-3), 217-234. https://doi.org/10.1016/S0191-8141(96)80046-0
  41. Jiménez, G.; Speranza, F.; Faccenna, C.; Bayona, G.; Mora, A. (2015). Magnetic stratigraphy of the Bucaramanga alluvial fan: Evidence for a ≤3 mm/yr slip rate for the Bucaramanga‐Santa Marta Fault, Colombia. Journal of South American Earth Sciences, 57, 12‐22. https://doi.org/10.1016/j.jsames.2014.11.001
  42. Jiménez, G.; García-Delgado, H.; Geissman, J.W. (2021). Magnetostratigraphy and magnetic properties of the Jurassic to Lower Cretaceous Girón Group (northern Andes, Colombia). Geosphere, 17(6), 2172-2196. https://doi.org/10.1130/GES02186.1
  43. Jiménez, G.; Geissman, J.W.; Bayona, G. (2022). Unraveling tectonic inversion and wrench deformation in the Eastern Cordillera (Northern Andes) with paleomagnetic and AMS data. Tectonophysics, 834, 229356. https://doi.org/10.1016/j.tecto.2022.229356
  44. Kammer, A. (1999). Observaciones acerca de un origen transpresivo de la Cordillera Oriental. Geología Colombiana, 24, 29‐53.
  45. Kammer, A.; Sánchez, J. (2006). Early Jurassic rift structures associated with the Soapaga and Boyacá faults of the Eastern Cordillera, Colombia: sedimentological inferences and regional implications. Journal of South American Earth Sciences, 21(4), 412-422. https://doi.org/10.1016/j.jsames.2006.07.006
  46. Keller, E.A. (1986). Investigation of active tectonics: Use of surficial Earth processes. En: Active Tectonics: Impact on Society (pp. 136-147). The National Academies Press.
  47. Keller, E.A.; Gurrola, L.; Tierney, T.E. (1999). Geomorphic criteria to determine direction of lateral propagation of reverse faulting and folding. Geology, 27(6), 515‐518. https://doi.org/10.1130/0091-7613(1999)027%3C0515:GCTDDO%3E2.3.CO;2
  48. Keller, E.A.; Pinter, N. (2002). Active tectonics earthquakes, uplift and landscape. Prentince Hall.
  49. Kellogg, J.N.; Vega, V.; Stailings, T.C.; Aiken, C.L.V.; Kellogg, J.N. (1995). Tectonic development of Panama, Costa Rica, and the Colombian Andes: Constraints from Global Positioning System geodetic studies and gravity. En: P. Mann (ed.). Geologic and tectonic development of the Caribbean Plate Boundary in Southern Central America (pp. 75-90). Geological Society of America. https://doi.org/10.1130/SPE295-p75
  50. Kirby, E.; Whipple, K.; Harkins, N. (2008). Topography reveals seismic hazard. Nature Geoscience, 1(8), 485‐487. https://doi.org/10.1038/ngeo265
  51. Londoño, J.M.; Quintero, S.; Vallejo, K.; Muñoz, F.; Romero, J. (2019). Seismicity of Valle Medio del Magdalena basin, Colombia. Journal of South American Earth Sciences, 92, 565-585. https://doi.org/10.1016/j.jsames.2019.04.003
  52. López, M.C.; Audemard, F.A. (2011). Evidence of Holocene compression at Tuluá, along the western foothills of the Central Cordillera of Colombia. En: F.A. Audemard, A.M. Michetti, J.P. McCalpin (eds.). Geological Criteria for Evaluating Seismicity Revisited: Forty Years of Paleoseismic Investigations and the Natural Record of Past Earthquakes (pp. 91-107). Geological Society of America. https://doi.org/10.1130/2011.2479(04)
  53. Ma, Z.; Peng, T.; Feng, Z.; Li, M.; Li, X.; Guo, B.; Li, J.; Song, C. (2019). Asymmetrical river valleys and their tectonic significance in the Maxianshan area, NE Tibetan Plateau. Geomorphology, 329, 70‐80. https://doi.org/10.1016/j.geomorph.2019.01.001
  54. Machuca, S.; García-Delgado, H.; Velandia, F. (2021). Studying active fault-related folding on tectonically inverted orogens: A case study at the Yariguíes Range in the Colombian Northern Andes. Geomorphology, 375, 107515. https://doi.org/10.1016/j.geomorph.2020.107515
  55. Molano‐Cárdenas, S.M.; Torres‐Rodríguez, M.D. (2018). Índices geomorfológicos como herramienta para la caracterización de la actividad neotectónica del sistema de fallas de Soapaga entre los municipios de Corrales y Pesca. Tesis de pregrado, Universidad Pedagógica y Tecnológica de Colombia, Sogamoso, Colombia.
  56. Mora, A.; Parra, M.; Strecker, M.R.; Sobel, E.R.; Hooghiemstra, H.; Torres, V.; Jaramillo, J.V. (2008). Climatic forcing of asymmetric orogenic evolution in the Eastern Cordillera of Colombia. GSA Bulletin, 120(7-8), 930-949. https://doi.org/10.1130/B26186.1
  57. Mora-Páez, H.; Kellogg, J.N.; Freymueller, J.T.; Mencin, D.; Fernandes, R.M.S.; Diederix, H.; LaFemina, P.; Cardona-Piedrahita, L.; Lizarazo, S.; Peláez-Gaviria, J.R.; Díaz-Mila, F.; Bohórquez-Orozco, O.; Giraldo-Londono, L.; Corchuelo-Cuervo, Y. (2019). Crustal deformation in the Northern Andes – a new GPS velocity field. Journal of South American Earth Sciences, 89, 76-91. https://doi.org/10.1016/j.jsames.2018.11.002
  58. Mora-Páez, H.; Audemard, F.A. (2021). GNSS Networks for Geodynamics in the Caribbean, Northwestern South America, and Central America. In: B. Erol, S. Erol (eds.). Geodetic sciences – theory, applications and recent developments (pp.143-164). IntechOpen. https://doi.org/10.5772/intechopen.97215
  59. Ollarves, R.; Audemard, F.A.; López, M.C. (2006). Morphotectonic criteria for the identification of active blind thrust faulting in alluvial environments: Case studies from Venezuela and Colombia. Zeitschrift für Geomorphologie, 145(Supplementary Issues), 81-103.
  60. OpenTopography. (2021). ALOS World 3D - 30m. https://portal.opentopography.org/raster?opentopoID=OTALOS.112016.4326.2
  61. Osorio, J.; Hernández, C.; Torres, E.; Botero, P. (2008). Modelo geodinámico del Macizo de Santander. INGEOMINAS, 152 p.
  62. París, G.; Machette, M.N.; Dart, R.L.; Haller, K.M. (2000). Map and database of Quaternary faults and folds in Colombia and its offshore regions. USGS. Open‐File Report 2000‐284 p.
  63. Pennington, W.D. (1981). Subduction of the Eastern Panama Basin and seismotectonics of Northwestern South America. Journal of Geophysical Research: Solid Earth, 86(B11), 10753-10770. https://doi.org/10.1029/JB086iB11p10753
  64. Pérez‐Peña, J.V.; Azañón, J.M.; Azor, A.; González-Lodeiro, F. (2009). Spatial analysis of stream power using GIS: SLk anomaly maps. Earth Surface Processes and Landforms, 34(1), 16‐25. https://doi.org/10.1002/esp.1684
  65. Pérez‐Peña, J.V.; Azor, A.; Azañón, J.M.; Keller E.A. (2010). Active tectonics in the Sierra Nevada (Betic Cordillera, SE Spain): Insights from geomorphic indexes and drainage pattern analysis. Geomorphology, 119(1-2), 74‐87. https://doi.org/10.1016/j.geomorph.2010.02.020
  66. Restrepo‐Pace, P.A. (1995). Late Precambrian to Early Mesozoic tectonic evolution of the Colombian Andes, based on new geochronological geochemical and isotopic data. PhD. Thesis, University of Arizona, USA.
  67. Rockwell, T.; Keller, E.; Johnson, D. (1984). Tectonic geomorphology of alluvial fans and mountain fronts near Ventura, California. 15th Annual Geomorphology Symposium, Boston.
  68. Rodríguez, L.M.; Sarabia, A.M.; Pérez, C.; Mora-Páez, H.; Singer, A.; Salcedo, E.; Yépez, S.; Cifuentes, H.; Diederix, H.; Torres, E.; Rodríguez, J.A.; Audemard, F.A.; Gómez, A.A.; Leal, A. (2015). Inventario de daños y efectos geológicos co- y/o post-sísmicos del sismo ocurrido el 18 de mayo de 1875, en la frontera entre Colombia y Venezuela. Revista de la Academia Nacional de la Ingeniería y el Hábitat, 30, 104-263.
  69. Rodríguez, L.; Diederix, H.; Torres, E.; Audemard, F.A.; Hernández, C.; Singer, A.; Bohórquez, O.; Yepez, S. (2018). Identification of the seismogenic source of the 1875 Cucuta earthquake on the basis of a combination of neotectonic, paleoseismologic and historic seismicity studies. Journal of South American Earth Sciences, 82, 274-291. https://doi.org/10.1016/j.jsames.2017.09.019
  70. Rodríguez, L.M.; Diederix, H.; Audemard, F.A.; Mora-Páez, H. (2019). Inventario de sismos con reportes de daños y efectos geológicos co-sísmicos en la frontera colombo-venezolana. Revista de la Facultad de Ingeniería de la UCV, 34(4).
  71. Salcedo-Hurtado, E.J.; Audemard, F.A.; García-Millán, N. (2021). Parámetros focales del terremoto del 28 de abril de 1894 en los Andes venezolanos usando datos macrosísmicos. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 45(175), 591-606. https://doi.org/10.18257/raccefyn.1195
  72. Sepúlveda, T. (2019). Neotectónica y paleosismología de la falla Mesamávida: evidencia de actividad cuaternaria tardía del cabalgamiento andino occidental (watf) en la Región del Maule, Chile Central (36°S). Tesis de pregrado, Universidad de Concepción, Chile.
  73. Silva, P.G.; Goy, J.L.; Zazo, C.; Bardají, T. (2003). Fault‐generated mountain fronts in southeast Spain: geomorphologic assessment of tectonic and seismic activity. Geomorphology, 50(1‐3), 203‐225. https://doi.org/10.1016/S0169-555X(02)00215-5
  74. Siravo, G.; Fellin, M.G.; Faccenna, C.; Maden, C. (2020). Transpression and the build‐up of the Cordillera: the example of the Bucaramanga fault (Eastern Cordillera, Colombia). Journal of the Geological Society, 177(1), 14-30. https://doi.org/10.1144/jgs2019-054
  75. Struth, L.; Teixell, A.; Owen, L.A.; Babault, J. (2016). Plateau reduction by drainage divide migration in the Eastern Cordillera of Colombia defined by morphometry and 10Be terrestrial cosmogenic nuclides. Earth Surface Processes and Landforms, 42(8), 1155-1170. https://doi.org/10.1002/esp.4079
  76. Struth, L.; Giachetta, E.; Willett, S.D.; Owen, L.A.; Tesón, E. (2020). Quaternary drainage network reorganization in the Colombian Eastern Cordillera plateau. Earth Surface Processes and Landforms, 45(8), 1789-1804. https://doi.org/10.1002/esp.4846
  77. Taboada, A.; Rivera, L.A.; Fuenzalida, A.; Cisternas, A.; Philip, H.; Bijwaard, H.; Olaya, J.; Rivera, C. (2000). Geodynamics of the northern Andes: subductions and intracontinental deformation (Colombia). Tectonics, 19(5), 787-813. https://doi.org/10.1029/2000TC900004
  78. Trenkamp, R.; Kellogg, J.N.; Freymueller, J.T.; Mora, H.P. (2002). Wide plate margin deformation, southern Central America and northwestern South America, CASA GPS observations. Journal of South American Earth Sciences, 15(2), 157-171. https://doi.org/10.1016/S0895-9811(02)00018-4
  79. Ul-Hadi, S.; Khan, S.D.; Owen, L.A.; Khan, A.S. (2013). Geomorphic response to an active transpressive regime: a case study along the Chaman strike‐slip fault, western Pakistan. Earth Surface Processes and Landforms, 38(3), 250‐264. https://doi.org/10.1002/esp.3272
  80. van der Lelij, R..; Spikings, R.; Mora, A. (2016). Thermochronology and tectonics of the Mérida Andes and the Santander Massif, NW South America. Lithos, 248-251, 220-239. https://doi.org/10.1016/j.lithos.2016.01.006
  81. Valencia-Ortiz, J.A.; Martínez-Graña, A.M. (2023a). Morphometric evaluation and its incidence in the mass movements present in the Chicamocha Canyon, Colombia. Sustainability, 15(2), 1140. https://doi.org/10.3390/su15021140
  82. Valencia-Ortiz, J.A., Martínez-Graña, A.M. (2023b). Calculation of precipitation and seismicity thresholds as triggers for mass movements in the region of Bucaramanga, Colombia. Ecological Indicators, 152, 110355. https://doi.org/10.1016/j.ecolind.2023.110355
  83. Valencia-Ortiz, J.A.; Martínez-Graña, A.M.; Cabero-Morán, M.T. (2024). DInSAR multi-temporal analysis for the characterization of ground deformations related to tectonic processes in the region of Bucaramanga, Colombia. Remote Sensing, 16(3), 449. https://doi.org/10.3390/rs16030449
  84. Velandia, F. (2017). Cinemática de las fallas mayores del Macizo de Santander ‐ énfasis en el modelo estructural y temporalidad al sur de la Falla de Bucaramanga. Tesis de Doctorado, Universidad Nacional de Colombia, Bogotá, Colombia.
  85. Velandia, F.; Cetina, M.A.; Castellanos, E.; Gómez, S. (2016). Análisis de fracturas y cinemática de fallas geológicas como primer aporte al modelo conceptual de aguas subterráneas en la zona de Charta, Macizo de Santander‐Colombia. Revista de la Facultad de Ingeniería. Universidad Central de Venezuela, 31(2), 37‐56.
  86. Velandia, F.; Bermúdez, M. (2018). The transpressive southern termination of the Bucaramanga fault (Colombia): Insights from geological mapping, stress tensors, and fractal analysis. Journal of Structural Geology, 115, 190-207. https://doi.org/10.1016/j.jsg.2018.07.020
  87. Velandia, F.; García‐Delgado, H.; Zuluaga, C.A.; López, J.A.; Bermúdez, M.A.; Audemard, F.A. (2020). Present‐day structural frame of the Santander Massif and Pamplona Wedge: The interaction of the Northern Andes. Journal of Structural Geology, 137, 104087. https://doi.org/10.1016/j.jsg.2020.104087
  88. Velandia, F.; Bermúdez, M.A.; Kohn, B.; Bernet, M.; Zuluaga, C.A.; Brichau, S. (2021). Cenozoic exhumation patterns in the northern Andes: constraints from the southern Bucaramanga Fault, Eastern Cordillera. Colombia. Journal of South American Earth Sciences, 111, 103473. https://doi.org/10.1016/j.jsames.2021.103473
  89. Villamizar-Escalante, N.; Zuluaga, C.A.; Bernet, M.; Amaya, S.; López-Isaza, J.A.; García-Delgado, H.; Velandia, F. (2024). Deep-seated crustal faults and their role in the thermo-tectonic evolution of an active mountain belt: New evidence from the Northern Andes. Journal of Structural Geology, 185, 105177. https://doi.org/10.1016/j.jsg.2024.105177
  90. Ward, D.E.; Goldsmith, R.; Cruz, J.; Restrepo, H. (1973). Geología de los cuadrángulos H‐12 Bucaramanga y H‐13 Pamplona, departamento de Santander. Boletin Geológico, 21(1-3), 1‐134.
  91. Wells, S.G.; Bullard, T.F.; Menges, C.M.; Drake, P.G.; Karas, P.A.; Kelson, K.I.; Ritter, J.B.; Wesling, J.R. (1988). Regional variations in tectonic geomorphology along a segmented convergent plate boundary pacific coast of Costa Rica. Geomorphology, 1(3), 239‐265. https://doi.org/10.1016/0169-555X(88)90016-5
  92. Yıldırım, C.; Tüysüz, O. (2017). Estimation of the long‐term slip, surface uplift and block rotation along the northern strand of the North Anatolian Fault Zone: Inferences from geomorphology of the Almacık Block. Geomorphology, 297, 55‐68. https://doi.org/10.1016/j.geomorph.2017.08.038