Desarrollo de una metodología heurística para la selección de un tratamiento pasivo aplicada a drenajes ácidos de mina en Santander, Colombia
Publicado 2024-03-08
Palabras clave
- Contaminación ambiental,
- Toma de decisión,
- Minería,
- Remediación,
- Tratamiento de aguas
Cómo citar
Derechos de autor 2024 Boletín de Geología
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Altmetrics
Resumen
Se desarrolló una metodología heurística, con el propósito de seleccionar un tratamiento pasivo caracterizado por poseer procesos químicos y/o biológicos para tratar los drenajes ácidos de mina, el cual no utiliza equipos externos y pueden cumplir su funcionamiento hasta por 20 años, lo anterior como alternativa para la remediación de un drenaje ácido de mina en la región de Soto Norte, Santander y que, de acuerdo con estudios realizados, presentó niveles de concentración de elementos, compuestos, tales como hierro, plomo, cobre, aluminio y sulfatos elevados, y pH ácido. Con el objetivo de encontrar alternativas exitosas y replicables de otras partes del mundo que presentan problemáticas similares, se realizó una búsqueda bibliográfica, que dio como resultado, 40 plantas industriales ubicadas en los siguientes países: Estados Unidos, Reino Unido, España, Nueva Zelanda y Canadá. Posteriormente, se evaluó cada una de ellas y se definieron las siguientes variables para su selección: la dilución de elementos contaminantes, flujo y el tiempo de funcionamiento, luego se procedió a graficarlas, categorizarlas y priorizarlas según su probabilidad de éxito. En este proceso, se obtuvo como resultado 3 plantas con una categorización de muy alta y 8 plantas con alta probabilidad de éxito, de las cuales, la planta denominada Cadillac Molybdenite de Canadá presentó el mejor desempeño teniendo en cuenta, el costo, número de etapas entre otros indicadores evaluados y la posibilidad que estas tecnologías puedan ser replicadas en Santander.
Descargas
Referencias
- Arango-Aramburo, M.; Olaya, Y. (2012). Problemática de los pasivos ambientales mineros Colombia. Revista Gestión y Ambiente, 15(3), 125-133.
- Bank of Canada (2023). Annual exchange rates. https://www.bankofcanada.ca/rates/exchange/annual-average-exchange-rates/
- Chaulk, J.; Zinck, J.; Griffith, W.; Mackinnon, T. (2003). Review of Mine Drainage Treatment and Sludge Management Operations. CANMET Mining and Mineral Sciences Laboratories Final Version.
- Clyde, E.J.; Champagne, P.; Jamieson, H.E.; Gorman, C.; Sourial, J. (2016). The use of a passive treatment system for the mitigation of acid mine drainage at the Williams Brothers Mine (California): Pilot-scale study. Journal of Cleaner Production, 130, 116-125. https://doi.org/10.1016/j.jclepro.2016.03.145
- DiLoreto, Z.A.; Weber, P.A.; Olds, W.; Pope, J.; Trumm, D.; Chaganti, S. R.; Heath, D.D.; Weisener, C.G. (2016). Novel cost effective full scale mussel shell bioreactors for metal removal and acid neutralization. Journal of Environmental Management, 183, 601-612. https://doi.org/10.1016/j.jenvman.2016.09.023
- Doshi, S.M. (2006). Bioremediation of acid mine drainage using sulfate-reducing bacteria. US Environmental Protection Agency, Office of Solid Waste and Emergency Response and Office of Superfund Remediation and Technology Innovation, 65, 13-39.
- Faulkner, B.B.; Skousen, J.G. (1994). Treatment of acid mine drainage by passive treatment systems. International Land Reclamation and Mine Drainage Conference and 3rd International Conference on the Abatement of Acidic Drainage, Pittsburgh, Pennsylvania EE. UU.
- Favas, P.J.; Martino, L.E.; Prasad, M.N. (2018). Abandoned Mine Land Reclamation—Challenges and Opportunities (Holistic Approach). In: Prasad, M.N.; Favas, P.J.; Maiti, S.K (eds.). Bio-Geotechnologies for Mine Site Rehabilitation (pp. 3-31). Elsevier. https://doi.org/10.1016/B978-0-12-812986-9.00001-4
- Ferreira, R.A.; Pereira, M.F.; Magalhães, J.P.; Maurício, A.M.; Caçador, I.; Martins-Dias, S. (2021). Assessing local acid mine drainage impacts on natural regeneration-revegetation of São Domingos mine (Portugal) using a mineralogical, biochemical and textural approach. Science of the Total Environment, 755, 142825. https://doi.org/10.1016/j.scitotenv.2020.142825
- Galindo, D. (2021). ¿Un adiós o una bienvenida al desarrollo de la minería tradicional en California, Santander? Tesis, Universidad de Bogotá Jorge Tadeo Lozano, Colombia.
- Gamión, J.L.; Horna, O.J. (2021). Revisión sistemática de los métodos activos y pasivos en el tratamiento de drenajes ácidos de mina. Tesis, Universidad César Vallejo, Perú.
- Genty, T.; Bussière, B.; Paradie, M.; Neculita, C.M. (2016). Passive biochemical treatment of ferriferous mine drainage: Lorraine mine site, Northern Québec, Canada. International Mine Water Association (IMWA) Conference, Leipzig, Germany.
- Gutiérrez, E. (2017). Herramienta de selección de tecnologías de tratamiento de aguas residuales basada en modelos de decisión multicriterio. Tesis, Universidad de los Andes, Colombia.
- Hamilton, J.; Gue, J.; Socotch, C. (2007). The use of steel slag in passive treatment design for AMD discharge in the Huff Run Watershed Restoration. American Society of Mining and Reclamation, 1, 272-282. https://doi.org/10.21000/jasmr07010272
- Ighalo, J.O.; Adeniyi, G.A. (2020). A comprehensive review of water quality monitoring and assessment in Nigeria. Chemosphere, 260, 127569. https://doi.org/10.1016/j.chemosphere.2020.127569
- Jamieson, H.E.; Walker, S.R.; Parsons, M.B. (2015). Mineralogical characterization of mine waste. Applied Geochemistry, 57, 85-105. https://doi.org/10.1016/j.apgeochem.2014.12.014
- Kilborn Inc. (1996). Review of passive systems for treatment of acid mine drainage. In Mine environment neutral drainage (MEND) program (Vol. 37, Issue 5).
- Kuyucak, N.; Chabot, F.; Martschuk, J. (2006). Successful implementation and operation of a passive treatment system in an extremely cold climate, Northern Quebec, Canada. 7th International Conference on Acid Rock Drainage - Also Serves as the 23rd Annual Meetings of the American Society of Mining and Reclamation, San Luis, Missouri EE.UU. https://doi.org/10.21000/jasmr06020980
- Macías, F.; Caraballo, M.A.; Nieto, J.M.; Rötting, T.S.; Ayora, C. (2012a). Natural pretreatment and passive remediation of highly polluted acid mine drainage. Journal of Environmental Management, 104, 93-100. https://doi.org/10.1016/j.jenvman.2012.03.027
- Macías, F.; Caraballo, M.A.; Rötting, T.S.; Pérez- López, R.; Nieto, J.M.; Ayora, C. (2012b). From highly polluted Zn-rich acid mine drainage to non-metallic waters: Implementation of a multi-step alkaline passive treatment system to remediate metal pollution. Science of the Total Environment, 433, 323-330. https://doi.org/10.1016/j.scitotenv.2012.06.084
- Mantilla, L.C.; Valencia, V.A.; Barra, F.; Pinto, J.; Colegial, J. (2009). Geocronología U-Pb de los cuerpos porfiríticos del distrito aurífero de Vetas - California (Dpto. de Santander, Colombia). Boletín de Geología, 31(1), 31-43.
- Martínez, N.M.; Basallote, M.D.; Meyer, A.; Cánovas, C.R.; Macías, F.; Schneider, P. (2019). Life cycle assessment of a passive remediation system for acid mine drainage: Towards more sustainable mining activity. Journal of Cleaner Production, 211, 1100-1111. https://doi.org/10.1016/j.jclepro.2018.11.224
- Mavhungu, A.; Foteinis, S.; Mbaya, R.; Masindi, V.; Kortidis, I.; Mpenyana-Monyatsi, L.; Chatzisymeon, E. (2021). Environmental sustainability of municipal wastewater treatment through struvite precipitation: Influence of operational parameters. Journal of Cleaner Production, 285, 124856. https://doi.org/10.1016/j.jclepro.2020.124856
- Moodley, I.; Sheridan, C.M.; Kappelmeyer, U.; Akcil, A. (2018). Environmentally sustainable acid mine drainage remediation: Research developments with a focus on waste/by-products. Minerals Engineering, 126, 207-220. https://doi.org/10.1016/j.mineng.2017.08.008
- Lewrick, M. (2009). Introduction of an evaluation tool to predict the probability of success of companies: The innovativeness, capabilities and potential model (ICP). Journal of Technology Management and Innovation, 4(1), 33-47. https://doi.org/10.4067/S0718-27242009000100004
- Nairn, R.W.; Hedin, R.S.; Watzlaf, G.R. (1992). Generation of Alkalinity in an Anoxic Limestone Drain. Journal American Society of Mining and Reclamation, 1, 206-219. https://doi.org/10.21000/jasmr92010206
- Ospina-Betancur, E.; Molina-Escobar, J.M. (2013). Legislación colombiana de cierre de minas. ¿Es realmente necesaria? Boletín de Ciencias de la Tierra, 34, 51-62.
- Peña-Ortiz, J.; Pérez-Vega, W. (2009). Manejo de drenajes ácidos de mina (DAM). Monografía, Universidad Industrial de Santander, Colombia.
- Polya, G. (2019). How to Solve It: A New Aspect of Mathematical Method. Princeton University Press. https://doi.org/10.2307/j.ctvc773pk
- Ramírez; F.; López, J.; A., Ardila, R. (2012). Simulación de la respuesta hidrogeoquímica de drenajes ácidos de mina, incrementando el pH usando CaO (cal) como agente alcalino en el distrito minero Vetas-California, Santander. Tesis, Universidad Industrial de Santander, Colombia.
- Romanycia, M.H.J.; Pelletier, F.J. (1985). What is a heuristic? Computational Intelligence, 1(1), 47- 58. https://doi.org/10.1111/j.1467-8640.1985.tb00058.x
- Saha, S.; Sinha, A. (2018). A review on treatment of acid mine drainage with waste materials: A novel approach. Global Nest Journal, 20(3), 512-528. https://doi.org/10.30955/gnj.002610
- Silver, E.A.; Victor, R.; Vidal, V.; De Werra, D. (1980). A tutorial on heuristic methods. European Journal of Operational Research, 5(3), 153-162. https://doi.org/10.1016/0377-2217(80)90084-3
- Skousen, J.G.; Ziemkiewicz, P.F.; McDonald, L.M. (2019). Acid mine drainage formation, control and treatment: Approaches and strategies. The Extractive Industries and Society, 6(1), 241-249. https://doi.org/10.1016/j.exis.2018.09.008
- Zinck, J.; Griffith, W. (2013). Review of mine drainage treatment and sludge management operations. MEND report, 3(1), 111.