Vol. 46 Núm. 3 (2024): Boletín de Geología
Homenaje al trabajo del Dr. Gerardo Botero-Arango

Algunas consideraciones sobre la estructura sísmica cortical en el norte de la Cordillera Central colombiana - Altiplano Antioqueño

Gaspar Monsalve
Universidad Nacional de Colombia
Andrés F. Muñoz-Calderón
Universidad Nacional de Colombia
David Santiago Avellaneda-Jiménez
Carnegie Institution for Science
Biografía
Sebastián Ramírez-Flórez
Universidad Nacional de Colombia

Publicado 2024-11-28

Palabras clave

  • Altiplano Antioqueño,
  • Batolito Antioqueño,
  • Espesor cortical,
  • Función receptora,
  • Sismicidad,
  • Mecanismo focal
  • ...Más
    Menos

Cómo citar

Monsalve, G., Muñoz-Calderón, A. F., Avellaneda-Jiménez, D. S., & Ramírez-Flórez, S. (2024). Algunas consideraciones sobre la estructura sísmica cortical en el norte de la Cordillera Central colombiana - Altiplano Antioqueño. Boletín De Geología, 46(3), 247–263. https://doi.org/10.18273/revbol.v46n3-2024011

Altmetrics

Resumen

En la parte norte de la Cordillera Central colombiana se encuentra el Altiplano Antioqueño, un conjunto de superficies de erosión geológicamente dominado por las rocas intrusivas del Batolito Antioqueño. La naturaleza de la deformación de la corteza en esta zona es aún enigmática. En este trabajo se integran algunos elementos que pueden contribuir al entendimiento de la estructura sísmica de la corteza, incluidos el uso de la técnica sismológica de la función receptora para estimar espesor cortical, el análisis de la sismicidad instrumental, y el cálculo de mecanismos focales de sismos con magnitudes mayores a 3; la integración de estos con el conocimiento de las litologías y las fallas regionales, permiten una mejor aproximación a la estructura cortical y a las características de su deformación actual. En particular, las funciones receptoras telesísmicas indican espesores de corteza de entre 45 y 55 km, sobre todo en el flanco occidental del altiplano; las funciones receptoras no son concluyentes acerca de este espesor en vecindades de su límite oriental. La sismicidad instrumental muestra una acumulación de sismos en los alrededores del Batolito Antioqueño y una relativa ausencia de estos en su interior. Los mecanismos focales indican un fallamiento inverso en el borde occidental del batolito y fallamientos de rumbo cercanos a su borde oriental.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Álvarez-Galíndez, M.; Ordóñez-Carmona, O.; Valencia-Marín, M.; Romero-Hernández, A. (2007). Geología de la zona de influencia de la falla Otú en el distrito minero Segovia – Remedios. Dyna, 74(153), 41-51.
  2. Arias, L.A. (1995). El relieve de la zona central de Antioquia: un palimpsesto de eventos tectónicos y climáticos. Revista Facultad de Ingeniería Universidad de Antioquia, 10, 9-24. https://doi.org/10.17533/udea.redin.325539
  3. Avellaneda-Jiménez, D.S.; Monsalve, G.; León, S.; Gómez-García, A.M. (2022a). Insights into Moho depth beneath the northwestern Andean región from gravity data inversion. Geophysical Journal International, 229(3), 1964-1977. https://doi.org/10.1093/gji/ggac041
  4. Avellaneda-Jiménez, D.S.; Monsalve, G.; Sánchez, J.S. (2022b). Seismic and thermo-compositional insights into the uppermost mantle beneath the Northern Andes magmatic arc. Journal of South American Earth Sciences, 117, 103883. https://doi.org/10.1016/j.jsames.2022.103883
  5. Bayona, G.; Cortés, M.; Jaramillo, C.; Ojeda, G.; Aristizábal, J.J.; Reyes-Harker, A. (2008). An integrated analysis of an orogen-sedimentary basin pair: Latest Cretaceous-Cenozoic evolution of the linked Eastern Cordillera orogen and the Llanos foreland basin of Colombia. GSA Bulletin, 120(9-10), 1171-1197. https://doi.org/10.1130/B26187.1
  6. Borrero, C.; Toro-Toro, L.M. (2016). Vulcanismo de afinidad adaquítica en el miembro inferior de la Formación Combia (Mioceno Tardío) al sur de la subcuenca de Amagá, Noroccidente de Colombia. Boletín de Geología, 38(1), 87-100. https://doi.org/10.18273/revbol.v38n1-2016005
  7. Botero, G. (1963). Contribución al conocimiento de la geología de la zona central de Antioquia. Anales de la Facultad de Nacional de Minas, 57, 7-101.
  8. Bustamante, A.; Juliani, C. (2011). Unraveling an antique subduction process from metamorphic basement around Medellín city, Central Cordillera of Colombian Andes. Journal of South American Earth Sciences, 32(3), 210-221. https://doi.org/10.1016/j.jsames.2011.06.005
  9. Caballero, V.; Mora, A.; Quintero, I.; Blanco, V.; Parra, M.; Rojas, L.E.; López, C.; Sánchez, N.; Horton, B.K.; Stockli, D.; Duddy, I. (2013). Tectonic controls on sedimentation in an intermontane hinterland basin adjacent to inversion structures: The Nuevo Mundo syncline, Middle Magdalena Valley, Colombia. Geological Society, London, Special Publications, 377, 315-342. https://doi.org/10.1144/SP377.12
  10. Cardona, A.; León, S.; Jaramillo, J.S.; Valencia, V.A.; Zapata, S.; Pardo-Trujillo, A.; Schmitt, A.K.; Mejía, D.; Arenas, J.C. (2020). Cretaceous record from a Mariana– to an Andean–Type Margin in the Central Cordillera of the Colombian Andes. In: J. Gómez, A.O. Pinilla-Pachon (eds.). The Geology of Colombia (pp. 335-373). Volumen 2, Chapter 10. Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.36.2019.10
  11. Case, J.E.; Durán, L.G.; Alfonso-López, R.; Moore, W.R. (1971). Tectonic investigations in western Colombia and eastern Panama. GSA Bulletin, 82(10), 2685-2712. https://doi.org/10.1130/0016-7606(1971)82[2685:TIIWCA]2.0.CO;2
  12. Chiarabba, C.; de Gori, P.; Faccenna, C.; Speranza, F.; Seccia, D.; Dionicio, V.; Prieto, G.A. (2016). Subduction system and flat slab beneath the Eastern Cordillera of Colombia. Geochemistry, Geophysics, Geosystems, 17(1), 16-27. https://doi.org/10.1002/2015GC006048
  13. Cortés, M.; Angelier, J. (2005). Current states of stress in the northern Andes as indicated by focal mechanisms of earthquakes. Tectonophysics, 403(1-4), 29-58. https://doi.org/10.1016/j.tecto.2005.03.020
  14. Cuadros, F.A.; Botelho, N.F.; Ordóñez-Carmona, O.; Matteini, M. (2014). Mesoproterozoic crust in the San Lucas Range (Colombia): An insight into the crustal evolution of the northern Andes. Precambrian Research, 245, 186-206. https://doi.org/10.1016/j.precamres.2014.02.010
  15. Das, R.; Saikia, U.; Rai, S.S. (2015). The deep geology of South India inferred from Moho depth and Vp/Vs ratio. Geophysical Journal International, 203(2), 910-926. https://doi.org/10.1093/gji/ggv351
  16. Drenth, B.J.; Keller, G.R.; Thompson, R.A. (2012). Geophysical study of the San Juan Mountains batholith complex, southwestern Colorado. Geosphere, 8(3), 669-684. https://doi.org/10.1130/GES00723.1
  17. Duque-Palacio, S.; Seward, D.; Restrepo-Moreno, S.A.; García-Ramos, D. (2021). Timing and rates of morpho-tectonic events in a segment of the Central and Western cordilleras of Colombia revealed through low-temperature thermochronology. Journal of South American Earth Sciences, 106, 103085. https://doi.org/10.1016/j.jsames.2020.103085
  18. Duque-Trujillo, J.; Bustamante, C.; Solari, L.; Gómez-Mafla, Á.; Toro-Villegas, G.; Hoyos, S. (2019). Reviewing the Antioquia batholith and satellite bodies: A record of Late Cretaceous to Eocene syn-to post-collisional arc magmatism in the Central Cordillera of Colombia. Andean Geology, 46(1), 82-101. https://doi.org/10.5027/andgeov46n1-3120
  19. García-Casco, A.; Restrepo, J.J.; Correa-Martínez, A.M.; Blanco-Quintero, I.F.; Proenza, J.A.; Weber, M.; Butjosa, L. (2020). The Petrologic Nature of the “Medellín Dunite” Revisited: An Algebraic Approach and Proposal of a New Definition of the Geological Body. In: J. Gómez, A.O. Pinilla-Pachon (eds.). The Geology of Colombia (pp. 45-75). Volume 2, Chapter 2. Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.36.2019.02
  20. Gómez-Tapias, J.; Montes-Ramírez, N.E.; Almanza-Meléndez, M.F.; Alcárcel-Gutiérrez, F.A.; Madrid-Montoya, C.A.; Diederix, H. (2017). Geological map of Colombia 2015. Episodes, 40(3), 201-212. https://doi.org/10.18814/epiiugs/2017/v40i3/017023
  21. Graterol, V.; Vargas, A. (2010). Mapa de anomalía de Bouguer total de la República de Colombia. ANH (Agencia Nacional de Hidrocarburos), Bogotá, Colombia.
  22. Grosse, E. (1926). El Terciario carbonífero de Antioquia. Ed. D. Reimer.
  23. Hardebeck, J.; Shearer, P. (2002). A new method for determining first-motion focal mechanisms. Bulletin of the Seismological Society of America, 92(6), 2264-2276. https://doi.org/10.1785/0120010200
  24. Havskov, J.; Ottemoller, L. (1999). SeisAn earthquake analysis software. Seismological Research Letters, 70(5), 532-534. https://doi.org/10.1785/gssrl.70.5.532
  25. Herrmann, R.B. (2013). Computer Programs in Seismology: An Evolving Tool for Instruction and Research. Seismological Research Letters, 84(6), 1081-1088. https://doi.org/10.1785/0220110096
  26. Horton, B.K.; Parra, M.; Mora, A. (2020). Construction of the Eastern Cordillera of Colombia: Insights from the Sedimentary Record. In: J. Gómez, D. Mateus-Zabala (eds.). The Geology of Colombia (pp. 67-88). Volume 3, Chapter 3. Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.37.2019.03
  27. Idárraga-García, J.; Kendall, J.M.; Vargas, C.A. (2016). Shear wave anisotropy in northwestern South America and its link to the Caribbean and Nazca subduction geodynamics. Geochemistry Geophysics, Geosystems, 17(9), 3655-3673. https://doi.org/10.1002/2016GC006323
  28. Jaramillo, J.S.; Cardona, A.; León, S.; Valencia, V.; Vinasco, C. (2017). Geochemistry and geochronology from Cretaceous magmatic and sedimentary rocks at 6°35′ N, western flank of the Central cordillera (Colombian Andes): Magmatic record of arc growth and collision. Journal of South American Earth Sciences, 76, 460-481. https://doi.org/10.1016/j.jsames.2017.04.012
  29. Jaramillo, J.S.; Cardona, A.; Monsalve, G.; Valencia, V.; León, S. (2019). Petrogenesis of the late Miocene Combia volcanic complex, northwestern Colombian Andes: Tectonic implication of short term and compositionally heterogeneous arc magmatism. Lithos, 330-331, 194-210. https://doi.org/10.1016/j.lithos.2019.02.017
  30. Kellogg, J.N.; Franco-Camelio, G.B.; Mora-Páez, H. (2019). Cenozoic tectonic evolution of the North Andes with constraints from volcanic ages, seismic reflection, and satellite geodesy. Andean Tectonics, 69-102. https://doi.org/10.1016/b978-0-12-816009-1.00006-x
  31. Kennett, B.L.N.; Engdahl, E.R. (1991). Traveltimes for global earthquake location and pase identification. Geophysical Journal International, 105(2), 429-465. https://doi.org/10.1111/j.1365-246X.1991.tb06724.x
  32. Kind, R.; Vinnik, L.P. (1987). The upper-mantle discontinuities underneath the GRF array from P-to-S converted phases. Journal of Geophysics, 62(1), 138-147.
  33. Langston, C.A. (1979). Structure under Mount Rainier, Washington, inferred from teleseismic body waves. Journal of Geophysical Research: Solid Earth, 84(B9), 4749-4762, https://doi.org/10.1029/JB084iB09p04749
  34. Lara, M.; Salazar-Franco, A.M.; Silva-Tamayo, J.C. (2018). Provenance of the Cenozoic siliciclastic intramontane Amagá Formation: Implications for the early Miocene collision between Central and South America. Sedimentary Geology, 373, 147-162. https://doi.org/10.1016/j.sedgeo.2018.06.003
  35. Leal-Mejía, H.; Shaw, R.P.; Melgarejo i Draper, J.C. (2019). Spatial-temporal migration of granitoid magmatism and the phanerozoic tectono-magmatic evolution of the Colombian Andes. In: F. Cediel, R.P. Shaw (eds.). Geology and tectonics of Northwestern South America (pp.253-410). Springer. https://doi.org/10.1007/978-3-319-76132-9_5
  36. León, S.; Cardona, A.; Mejía, D.; Botello, G.E.; Villa, V.; Collo, G.; Valencia, V.; Zapata, S.; Avellaneda-Jiménez, D.S. (2019). Source area evolution and thermal record of an Early Cretaceous back-arc basin along the northwesternmost Colombian Andes. Journal South American Earth Sciences, 94, 102229. https://doi.org/10.1016/j.jsames.2019.102229
  37. Ligorría, J.P.; Ammon, C.J. (1999). Iterative deconvolution and receiver-function estimation. Bulletin of the Seismological Society of America, 89(5), 1395-1400, https://doi.org/10.1785/BSSA0890051395
  38. Marín-Cerón, M.I.; Leal-Mejía, H.; Bernet, M.; Mesa-García, J. (2019). Late Cenozoic to modern-day volcanism in the Northern Andes: A geochronological, petrographical, and geochemical review. In: F. Cediel, R.P. Shaw (eds.). Geology and tectonics of Northwestern South America (pp. 603-601). Springer. https://doi.org/10.1007/978-3-319-76132-9_8
  39. Martens, U.; Restrepo, J.J.; Ordóñez-Carmona, O.; Correa-Martínez, A.M. (2014). The Tahamí and Anacona terranes of the Colombian Andes: Missing links between the South American and Mexican Gondwana margins. The Journal of Geology, 122(5), 507-530. https://doi.org/10.1086/677177
  40. Maya, M.; González, H. (1995). Unidades Litodémicas en la Cordillera Central de Colombia. Boletín Geológico, 35(2-3), 44-57.
  41. Mojica-Boada, J.M.; Poveda, E.; Tary, J.B. (2022). Lithospheric and slab configurations from Receiver Function Imaging in Northwestern South America, Colombia. Journal of Geophysical Research: Solid Earth, 127(12), e2022JB024475. https://doi.org/10.1029/2022JB024475
  42. Monsalve-Bustamante, M.L. (2020). The volcanic front in Colombia: Segmentation and recent and historical activity. In: J. Gómez, A.O. Pinilla-Pachon (eds.). The Geology of Colombia (pp. 97-159). Volume 4, Chapter 3. Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.38.2019.03
  43. Monsalve-Bustamante, M.L.; Gómez, J.; Núñez-Tello, A. (2020). Rear–arc small–volume basaltic volcanism in Colombia: Monogenetic volcanic fields. In: J. Gómez, A.O. Pinilla-Pachon (eds.). The Geology of Colombia (pp. 353-396). Volume 4, Chapter 10. Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.38.2019.10
  44. Mora-Páez, H.; Kellogg, J.N.; Frymueller, J.T.; Mencin, D.; Fernandes, R.M.S.; Diederix, H.; LaFemina, P.; Cardona-Piedrahita, L.; Lizarazo, S.; Peláez-Gaviria, J.R.; Díaz-Mila, F.; Bohórquez-Orozco, O.; Giraldo-Londoño, L.; Corchuelo-Cuervo, Y. (2019). Crustal deformation in the northern Andes - A new GPS velocity field. Journal of South American Earth Sciences, 89, 76-91, https://doi.org/10.1016/j.jsames.2018.11.002
  45. Mora, A.; Reyes-Harker, A.; Rodríguez, G.; Tesón, E.; Ramírez-Arias, J.C.; Parra, M.; Caballero, V.; Mora, J.P.; Quintero, I.; Valencia, V.; Ibáñez, M.; Horton, B.K.; Stockli, D.F. (2013). Inversion tectonics under increasing rates of shortening and sedimentation: Cenozoic example from the Eastern Cordillera of Colombia. Geological Society, London, Special Publications, 377, 411-442. https://doi.org/10.1144/SP377.6
  46. Mora, A.; Villagómez, D.; Parra, M.; Caballero, V.M.; Spikings, R.; Horton, B.K.; Mora-Bohórquez, J.A.; Ketcham, R.A.; Arias-Martínez, J.P. (2020). Late Cretaceous to Cenozoic Uplift of the Northern Andes: Paleogeographic Implications. In: J. Gómez, D. Mateus-Zabala (eds.). The Geology of Colombia (pp. 89-121). Volume 3, Chapter 4. Servicio Geológico Colombiano. https://doi.org/10.32685/pub.exp.37.2019.04
  47. Nakamura, M. (2002). Determination of focal mechanism solution using initial motion polarity of P and S waves. Physics of the Earth and Planetary Interiors, 130(1-2), 17-29. https://doi.org/10.1016/S0031-9201(01)00306-5
  48. Ojeda, A.; Havskov, J. (2001). Crustal structure and local seismicity in Colombia. Journal of Seismology, 5, 575-593. https://doi.org/10.1023/A:1012053206408
  49. Owens, T.; Zandt, G. (1985). The response of continental crust-Mantle boundary observed on broadband teleseismic receiver functions. Geophysical Research Letters, 12(10), 705-708. https://doi.org/10.1029/GL012i010p00705
  50. Page, W.D.; James, M.E. (1981). The antiquity of the erosion surfaces and late Cenozoic deposits near Medellín, Colombia: Implications to tectonics and erosion rates. Revista CIAF, 6, 421-454.
  51. Poveda, E.; Monsalve, G.; Vargas, C.A. (2015). Receiver functions and crustal structure of the northwestern Andean region, Colombia. Journal of Geophysical Research: Solid Earth, 120(4), 2408-2425. https://doi.org/10.1002/2014JB011304
  52. Reasenberg, P.A. (1985). FPFIT, FPPLOT, and FPPAGE: Fortran computer programs for calculating and displaying earthquake fault-plane solutions. US Geological Survey Open-File Report 85-739. https://doi.org/10.3133/ofr85739
  53. Restrepo, J.J. (2007). Obducción y metamorfismo de Ofiolitas Triásicas en el Flanco Occidental del terreno Tahamí, Cordillera Central de Colombia. Boletín Ciencias de la Tierra, 1, 49-100.
  54. Restrepo, J.J.; Toussaint, J.F. (1988). Terranes and continental accretion in the Colombian Andes. Episodes, 11(3), 189-193. https://doi.org/10.18814/epiiugs/1988/v11i3/006
  55. Restrepo, J.J.; Ordóñez-Carmona, O.; Armstrong, R.; Pimentel, M.M. (2011). Triassic metamorphism in the northern part of the Tahamí Terrane of the central cordillera of Colombia. Journal of South American Earth Sciences, 32(4), 497-507. https://doi.org/10.1016/j.jsames.2011.04.009
  56. Restrepo, J.J.; Martens, U.; Giraldo-Ramírez, W.E. (2020). The Anacona Terrane: A small early Paleozoic Peri–Gondwanan Terrane in the Cauca–Romeral Fault System. In: J. Gómez, D. Mateus-Zabala (eds.). The Geology of Colombia (pp. 149-165). Volume 1, Chapter 8. Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.35.2019.08
  57. Restrepo-Moreno, S.A.; Foster, D.A.; Kamenov, G.D. (2007). Formation age and magma sources for the Antioqueño Batholith derived from LA-ICP-MS Uranium–Lead dating and hafnium-isotope analysis of Zircon Grains. Proceedings Geological Society of America Abstracts With Programs, 32007, 3(6), 493-494.
  58. Restrepo-Moreno, S.A. (2009). Long-term morphotectonic evolution and denudation chronology of the Antioqueño Plateau, Cordillera Central, Colombia. PhD thesis, University of Florida.
  59. Restrepo-Moreno, S.A.; Foster, D.A.; Stockli, D.F.; Parra-Sánchez, L.N. (2009). Long-term erosion and exhumation of the “Altiplano Antioqueño”, Northern Andes (Colombia) from apatite (U-Th)/He thermochronology. Earth and Planetary Science Letters, 278(1-2), 1-12. https://doi.org/10.1016/j.epsl.2008.09.037
  60. Schulte-Pelkum, V.; Monsalve, G.; Sheehan, A.; Pandey, M.R.; Sapkota, S.; Bilham, R.; Wu, F. (2005). Imaging the Indian subcontinent beneath the Himalaya. Nature, 435, 1222-1225. https://doi.org/10.1038/nature03678
  61. Schulte‐Pelkum, V.; Mahan, K.H. (2014). Imaging faults and shear zones using receiver functions. Pure and Applied Geophysics, 171(11), 2967-2991. https://doi.org/10.1007/s00024-014-0853-4
  62. Shearer, P.M. (2019). Introduction to seismology. Cambridge University Press https://doi.org/10.1017/9781316877111
  63. Sierra, G.M.; Silva-Tamayo, J.C.; Correa, L.G. (2003). Estratigrafía secuencial de la Formación Amagá. Boletín de Ciencias de la Tierra, 15, 9-22.
  64. Sierra, G.M.; Marín-Cerón, M.I. (2011). Petroleum Geology of Colombia. Amagá, Cauca and Patía Basins. Agencia Nacional de Hidrocarburos, Fondo Editorial Universidad EAFIT.
  65. Silva-Tamayo, J.C.; Sierra, G.M.; Correa, L.G. (2008). Tectonic and climate driven fluctuations in the stratigraphic base level of a Cenozoic continental coal basin, northwestern Andes. Journal of South American Earth Sciences, 26(4), 369-382. https://doi.org/10.1016/j.jsames.2008.02.001
  66. Spikings, R.; Cochrane, R.; Villagómez, D.; Van der Lelij, R.; Vallejo, C.; Winkler, W.; Beate, B. (2015). The geological history of northwestern South America: From Pangaea to the early collision of the Caribbean Large Igneous Province (290-75 Ma). Gondwana Research, 27(1), 95-139. https://doi.org/10.1016/j.gr.2014.06.004
  67. Sun, M.; Bezada, M.J.; Cornthwaite, J.; Prieto, G.A.; Niu, F.; Levander, A. (2022). Overlapping slabs: Untangling subduction in NW South America through finite-frequency teleseismic tomography. Earth and Planetary Science Letters, 577, 117253, https://doi.org/10.1016/j.epsl.2021.117253
  68. Syracuse, E.M.; Maceira, M.; Prieto, G.A.; Zhang, H.; Ammon, C.J. (2016). Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data. Earth and Planetary Science Letters, 444, 139-149. https://doi.org/10.1016/j.epsl.2016.03.050
  69. Vargas, C.A. (2020). Subduction geometries in Northwestern South America. In: J. Gómez, A.O. Pinilla-Pachon (eds.). The Geology of Colombia (pp. 397-422). Volume 4, Chapter 11. Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.38.2019.11
  70. Vargas, C.A.; Mann, P. (2013). Tearing and breaking off of subducted slabs as the result of collision of the Panama arc-indenter with Northwestern South America. Bulletin of the Seismological Society of America, 103(3), 2025-2046. https://doi.org/10.1785/0120120328
  71. Veloza, G.; Styron, R.; Taylor, M.; Mora, A. (2012). Open-source archive of active faults for northwest South America. GSA Today, 22(10), 4-10. https://doi.org/10.1130/GSAT-G156A.1
  72. Villagómez, D.; Spikings, R.; Magna, T.; Kammer, A.; Winkler, W.; Beltrán, A. (2011). Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia. Lithos, 125(3-4), 875-896. https://doi.org/10.1016/j.lithos.2011.05.003
  73. Villagómez, D.; Spikings, R. (2013). Thermochronology and tectonics of the Central and Western Cordilleras of Colombia: Early Cretaceous–Tertiary evolution of the northern Andes. Lithos, 160-161, 228-249. https://doi.org/10.1016/j.lithos.2012.12.008
  74. Vinasco, C. (2019). The romeral shear zone. In: F. Cediel, R.P. Shaw (eds.). Geology and tectonics of Northwestern South America. (pp. 833-876). Springer. https://doi.org/10.1007/978-3-319-76132-9_12
  75. Vinasco, C.J.; Cordani, U.G.; González, H.; Weber, M.; Peláez, C. (2006). Geochronological, isotopic, and geochemical data from Permo-Triassic granitic gneisses and granitoids of the Colombian Central Andes. Journal of South American Earth Sciences, 21(4), 355-371. https://doi.org/10.1016/j.jsames.2006.07.007
  76. Wagner, L.S.; Jaramillo, J.S.; Ramírez-Hoyos, L.F.; Monsalve, G.; Cardona, A.; Becker, T.W. (2017). Transient slab flattening beneath Colombia. Geophysical Research Letters, 44(13), 6616-6623. https://doi.org/10.1002/2017GL073981
  77. Weber, M.; Duque, J.F.; Hoyos, S.; Cárdenas-Rozo, A.L.; Gómez-Tapias, J.; Wilson, R. (2020). The Combia Volcanic Province: Miocene Post–Collisional Magmatism in the Northern Andes. In: J. Gómez, D. Mateus-Zabala (eds.). The Geology of Colombia (pp. 355-394). Volume 3, Chapter 12. Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.37.2019.12
  78. Zapata, S.; Cardona, A.; Jaramillo, J.S.; Patiño, A.; Valencia, V.; León, S.; Mejía, D.; Pardo-Trujillo, A.; Castañeda, J.P. (2019). Cretaceous extensional and compressional tectonics in the Northwestern Andes, prior to the collision with the Caribbean oceanic plateau. Gondwana Research, 66, 207-226. https://doi.org/10.1016/j.gr.2018.10.008
  79. Zapata, S.; Zapata-Henao, M.; Cardona, A.; Jaramillo, C.; Silvestro, D.; Oboh-Ikuenobe, F. (2021). Long-term topographic growth and decay constrained by 3-D thermo-kinematic modeling: Tectonic evolution of the Antioquia Altiplano, Northern Andes. Global and Planetary Change, 203, 103553. https://doi.org/10.1016/j.gloplacha.2021.103553
  80. Zapata-Villada, J.P.; Cardona, A.; Serna, S.; Rodríguez, G. (2021). Late Cretaceous to Paleocene magmatic record of the transition between collision and subduction in the Western and Central Cordillera of northern Colombia. Journal of South American Earth Sciences, 112(Part 1), 103557. https://doi.org/10.1016/j.jsames.2021.103557
  81. Zhu, L.; Kanamori, H. (2000). Moho depth variation in Southern California from teleseismic receiver functions. Journal of Geophysical Research: Solid Earth, 105(B2), 2969-2980. https://doi.org/10.1029/1999JB900322