Vol. 47 Núm. 1 (2025): Boletín de Geología
Artículos científicos

Evidencias mineralógicas y geoquímicas de la Gran Provincia Ígnea del Caribe (CLIP) en el basamento submarino de la Cuenca Guajira, Colombia

Daniel Rincón-Martínez
Ecopetrol
Fabián Mauricio Botello-Becerra
Universidad Industrial de Santander
Angélica María Carreño-Parra
Ecopetrol
María del Rosario Pérez-Trejos
Ecopetrol
Oswaldo Mantilla-Muñoz
Ecopetrol
Julián Francisco Naranjo-Vesga
Ecopetrol
Sandra Milena Restrepo-Acevedo
Ecopetrol

Publicado 2025-05-06

Palabras clave

  • Rocas de basamento,
  • Placa del Caribe,
  • Gran provincia Ígnea del Caribe,
  • Petrografía,
  • Geoquímica,
  • Cuenca Guajira offshore
  • ...Más
    Menos

Cómo citar

Rincón-Martínez, D., Botello-Becerra, F. M., Carreño-Parra, A. M., Pérez-Trejos, M. del R., Mantilla-Muñoz, O., Naranjo-Vesga, J. F., & Restrepo-Acevedo, S. M. (2025). Evidencias mineralógicas y geoquímicas de la Gran Provincia Ígnea del Caribe (CLIP) en el basamento submarino de la Cuenca Guajira, Colombia. Boletín De Geología, 47(1), 13–41. https://doi.org/10.18273/revbol.v47n1-2025001

Altmetrics

Resumen

El origen y la composición del basamento del margen norte de Suramérica son controvertidos debido a que son el resultado de la compleja interacción de las placas tectónicas del Caribe, sudamericana y de Nazca a lo largo del tiempo geológico. Uno de los principales problemas que han limitado una comprensión adecuada es la dificultad de obtener muestras de rocas ígneas y metamórficas costa afuera. En este artículo se caracteriza el basamento del pozo exploratorio Orca-1, perforado en la Cuenca Guajira offshore, porción sur del mar Caribe. La secuencia analizada tiene alrededor de 200 m de espesor, donde se identifican basaltos y andesitas basálticas, con eventual ocurrencia de episodios extrusivos, interpretados a partir de la presencia de rocas piroclásticas depositadas en un ambiente submarino. La alteración mineralógica de estas rocas apunta a un importante papel de los fluidos hidrotermales en su formación. La firma geoquímica del basamento muestra una reducida diversidad composicional atribuida a una misma historia de fusión, lo cual indica una afinidad toleítica y una fuente tipo pluma, sin evidencia alguna de componente de subducción o de interacción manto-corteza en su petrogénesis. Por su composición, se plantea que las rocas del basamento de Orca-1 corresponden a un fragmento de la corteza oceánica formadora la Gran Provincia Ígnea del Caribe (CLIP) y que fue acrecionado a la margen norte de la península de La Guajira, al norte de la Sutura de Chimare, que ha sido interpretada como el límite más septentrional de los principales bloques de basamento considerados autóctonos de Suramérica.

Descargas

Referencias

  1. Abd El-Rahman, Y.; Surour, A.A.; El-Manawi, A.H.W.; El-Dougdoug, A.M.A.; Omar, S. (2015). Regional setting and characteristics of the Neoproterozoic Wadi Hamama Zn–Cu–Ag–Au prospect: evidence for an intra-oceanic island arc-hosted volcanogenic hydrothermal system. International Journal of Earth Sciences (Geologische Rundschau), 104, 625-644. https://doi.org/10.1007/s00531-014-1093-7
  2. Aitken, T.; Mann, P.; Escalona, A.; Christeson, G. (2011). Evolution of the Grenada and Tobago basins and implications for arc migration. Marine and Petroleum Geology, 28(1), 235-258. https://doi.org/10.1016/j.marpetgeo.2009.10.003
  3. Alvarado, G.E.; Denyer, P.; Sinton, C.W. (1997). The 89 Ma Tortugal komatiitic suite, Costa Rica: implications for a common geological origin of the Caribbean and Eastern Pacific region from a mantle plume. Geology, 25(5), 439-442. https://doi.org/10.1130/0091-7613(1997)025<0439:TMTKSC>2.3.CO;2
  4. Amstutz, G.C. (1974). Spilites and Spilitic Rocks. Springer-Verlag. https://doi.org/10.1007/978-3-642-88230-2
  5. Ariza-Acero, M.M.; Spikings, R.; Beltrán-Triviño, A.; Ulianov, A.; von Quadt, A. (2022). Geochronological, geochemical and isotopic characterization of the basement of the Chocó-Panamá Block in Colombia. Lithos, 412-413, 106598. https://doi.org/10.1016/j.lithos.2022.106598
  6. Baquero, M. (2015). Evolución geodinámica del noroccidente de Venezuela, basados en nuevos datos de geocronología, geoquímica e isotópicos. Tesis doctoral, Universidad Central de Venezuela, Venezuela.
  7. Barrera‐Lopez, C.V.; Mooney, W.D.; Kaban, M.K. (2022). Regional geophysics of the Caribbean and northern South America: Implications for tectonics. Geochemistry, Geophysics, Geosystems, 23(5), e2021GC010112. https://doi.org/10.1029/2021GC010112
  8. Bellizzia, A.; Carmona C.L.; Graterol, M. (1969). Reconocimiento geológico de las islas Monjes del Sur (Archipiélago de Los Monjes), Venezuela. Boletín de Geología de Venezuela, 10(20), 225-230.
  9. Bellizzia, A.; Bellizzia, C.M.; Peréz, H.; Graterol, M. (1973). Tercera exploración Científica al Archipiélago de los Monjes. Boletín de la Sociedad Venezolana de Ciencias Naturales, 21, 130-131.
  10. Bence, A.E.; Papike, J.J.; Ayuso, R.A. (1975). Petrology of submarine basalts from the central Caribbean: DSDP Leg 15. Journal of Geophysical Research, 80(35), 4775-4804. https://doi.org/10.1029/JB080i035p04775
  11. Blenkinsop, T.G. (2000). Deformation Microstructures and Mechanisms in Minerals and Rocks. Springer Science & Business Media.
  12. Buchs, D.M.; Arculus, R.J.; Baumgartner, P.O.; Baumgartner-Mora, C.; Ulianov, A. (2010). Late Cretaceous arc development on the SW margin of the Caribbean Plate: Insights from the Golfito Costa Rica, and Azuero, Panamá, complexes. Geochemistry, Geophysics, Geosystems, 11(7), Q07S24. https://doi.org/10.1029/2009GC002901
  13. Burke, K. (1988). Tectonic evolution of the Caribbean. Annual Review of Earth and Planetary Sciences, 16, 201-230. https://doi.org/10.1146/annurev.ea.16.050188.001221
  14. Cabanis, B.; Lecolle, M. (1989). Le diagramme La/l0-Y/15-Nb/8: un outil pour la discrimination des series volcaniques et la mise en évidence des processus de mélange et/ou de contamination crustale. Comptes Rendus de l’Academie des Sciences, 2(309), 2023-2029.
  15. Calais, E.; Symithe, S.; Mercier de Lépinay, B.; Prépetit, C. (2016). Plate boundary segmentation in the northeastern Caribbean from geodetic measurements and Neogene geological observations. Comptes Rendus Geoscience, 348(1), 42-51. https://doi.org/10.1016/j.crte.2015.10.007
  16. Cardona, A.; Weber, M.; Wilson, R.; Cordani, U.; Muñoz, C.M.; Paniagua, F. (2007). Evolución tectono-magmática de las rocas maficas-ultramáficas del Cabo de La Vela y el Stock de Parashi, Península de la Guajira: registro de la evolución orogénica Cretácica-Eocena del norte de Suramérica y el Caribe. XI Congreso Colombiano de Geologia, Bucaramanga, Colombia.
  17. Cardona, A.; Valencia, V.; Bayona, G.; Jaramillo, C.; Ojeda G.; Ruiz, J. (2009). U/Pb LA-MC-ICP-MS Zircon geochronology and geochemistry from a postcollisional biotite granite of the Baja Guajira Basin, Colombia: Implications for Late Cretaceous and Neogene Caribbean-south American Tectonics. The Journal of Geology, 117(6), 685-692. https://doi.org/10.1086/605776
  18. Cardona, A.; Valencia, V.; Bayona, G.; Duque, J.; Ducea, M.; Gehrels, G.; Jaramillo, C.; Montes, C.; Ojeda, G.; Ruiz, J. (2011). Early subduction-related orogeny in the northern Andes: Turonian to Eocene magmatic and provenance record in the Santa Marta Massif and Rancheria Basin, northern Colombia. Terra Nova, 23(1), 26-34. https://doi.org/10.1111/j.1365-3121.2010.00979.x
  19. Cardona, A.; Weber, M.; Valencia, V.; Bustamante, C.; Montes, C.; Cordani, U.; Muñoz, C. (2014). Geochronology and geochemistry of the Parashi granitoid, NE Colombia: Tectonic implication of short-lived early Eocene plutonism along the SE Caribbean margin. Journal of South American Earth Sciences, 50, 75-92. https://doi.org/10.1016/j.jsames.2013.12.006
  20. Cerón, J.F.; Kellogg, J.N.; Ojeda, G.Y. (2007). Basement configuration of the northwestern South America - Caribbean margin from recent geophysical data. CT&F - Ciencia, Tecnología y Futuro, 3(3), 25-49. https://doi.org/10.29047/01225383.474
  21. Cerón, J.F. (2008). Crustal structure of the Colombian Caribbean Basin and margins. Ph.D. Dissertation, University of South Carolina, Columbia.
  22. Condie, K.C. (1989). Geochemical changes in baslts and andesites across the Archean-Proterozoic boundary: Identification and significance. Lithos, 23(1-2), 1-18. https://doi.org/10.1016/0024-4937(89)90020-0
  23. Cortés, M.; Angelier, J. (2005). Current states of stress in the northern Andes as indicated by focal mechanisms of earthquakes. Tectonophysics, 403(1-4), 29-58. https://doi.org/10.1016/j.tecto.2005.03.020
  24. Dilek, Y.; Furnes, H. (2011). Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. GSA Bulletin, 123(3/4), 387-411. https://doi.org/10.1130/B30446.1
  25. Donnelly, T.W.; Melson, W.; Kay, R.; Rogers, J.J.W. (1973). Basalt and dolerite from the central Caribbean. En: N.T. Edgar, A.G. Kaneps, J.R. Herring (eds.). Initial reports of the Deep Sea Drilling Project (pp. 989-1011). Geological Society of America. https://doi.org/10.2973/dsdp.proc.15.130.1973
  26. Driscoll, N.W.; Diebold, J.B. (1999). Tectonic and stratigraphic development of the eastern Caribbean: New constraints from multichannel seismic data. Sedimentary Basins of the World, 4, 591-626. https://doi.org/10.1016/S1874‐5997(99)80054‐9
  27. Dürkefälden, A.; Hoernle, K.; Hauff, F.; Wartho, J.A.; van den Bogaard, P.; Werner, R. (2019a). Age and geochemistry of the Beata Ridge: Primary formation during the main phase (~89 Ma) of the Caribbean Large Igneous Province. Lithos, 328-329, 69-87. https://doi.org/10.1016/j.lithos.2018.12.021
  28. Dürkefälden, A.; Hoernle, K.; Hauff, F.; Werner, R.; Garbe-Schönberg, D. (2019b). Second-stage Caribbean Large Igneous Province volcanism: The depleted Icing on the enriched Cake. Chemical Geology, 509, 45-63. https://doi.org/10.1016/j.chemgeo.2019.01.004
  29. Escuder-Viruete, J.; Joubert, M.; Abad, M.; Pérez-Valera, F.; Gabites, J. (2016). The basaltic volcanism of the Dumisseau Formation in the Sierra de Bahoruco, SW Dominican Republic: A record of the mantle plume-related magmatism of the Caribbean Large Igneous Province. Lithos, 254-255, 67-83. https://doi.org/10.1016/j.lithos.2016.03.013
  30. Folk, R.L. (1974). Petrology of Sedimentary Rocks. Hemphills.
  31. Fox, P.J.; Ruddiman, W.F.; Ryan, W.B.F.; Heezen, B.C. (1970). The geology of the Caribbean crust, I: Beata Ridge. Tectonophysics, 10(5-6), 495-513. https://doi.org/10.1016/0040-1951(70)90041-7
  32. Fox, P.J.; Schreiber, E.; Heezen, B.C. (1971). The geology of the Caribbean crust. Tertiary sediments, granitic and basic rocks from the Aves Ridge. Tectonophysics, 12(2), 89-109. https://doi.org/10.1016/0040-1951(71)90011-4
  33. Gale, A.; Dalton, C.A.; Langmuir, C.H.; Su, Y.; Schilling, J.G. (2013). The mean composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems, 14(3), 489-518. https://doi.org/10.1029/2012GC004334
  34. García-Reyes, A.; Dyment, J. (2021). Structure, age, and origin of the Caribbean Plate unraveled. Earth and Planetary Science Letters, 571, 117100. https://doi.org/10.1016/j.epsl.2021.117100
  35. Garrocq, C.; Lallemand, S.; Marcaillou, B.; Lebrun, J.F.; Padron, C.; Klingelhoefer, F.; Laigle, M.; Münch, P.; Gay, A.; Schenini, L.; Beslier, M.O.; Cornée1, J.J.; Mercier de Lépinay, B.; Quillévéré, F.; BouDagher-Fadel, M.; the GARANTI cruise team. (2021). Genetic relations between the Aves Ridge and the Grenada back-arc Basin, East Caribbean Sea. Journal of Geophysical Research: Solid Earth, 126, e2020JB020466. https://doi.org/10.1029/2020JB020466
  36. Gazel, E.; Trela, J.; Bizimis, M.; Sobolev, A.; Batanova, V.; Class, C.; Jicha, B. (2018). Long-lived source heterogeneities in the Galapagos Mantle Plume. Geochemistry, Geophysics, Geosystems, 19(8), 2764-2779. https://doi.org/10.1029/2017GC007338
  37. Giunta, G.; Beccaluva, L.; Coltorti, M.; Siena, F.; Vaccaro, C. (2002). The southern margin of the Caribbean Plate in Venezuela: tectono-magmatic setting of the ophiolitic units and kinematic evolution. Lithos, 63(1-2), 19-40. https://doi.org/10.1016/S0024-4937(02)00120-2
  38. Giunta, G.; Beccaluva, L.; Siena, F. (2006). Caribbean Plate margin evolution: constraints and current problems. Geologica Acta, 4(1-2), 265-277. https://doi.org/10.1344/105.000000369
  39. Hastie, A.R.; Kerr, A.C.; Pearce, J.A.; Mitchell, S.F. (2007). Classification of altered volcanic island arc rocks using immobile trace elements: Development of the Th-Co discrimination diagram. Journal of Petrology, 48(12), 2341-2357. https://doi.org/10.1093/petrology/egm062
  40. Hastie, A.R.; Ramsook, R.; Mitchell, S.F.; Kerr, A.C.; Millar, I.L.; Mark, D.F. (2010). Geochemistry of Compositionally Distinct Late Cretaceous Back-Arc Basin Lavas: Implications for the Tectonomagmatic Evolution of the Caribbean Plate. The Journal of Geology, 118(6), 655-676. https://doi.org/10.1086/656353
  41. Hauff, F.; Hoernle, K.; van den Bogaard, P.; Alvarado, G.E.; Garbe-Schönberg, D. (2000a). Age and geochemistry of basaltic complexes in western Costa Rica: contributions to the geotectonic evolution of central America. Geochemistry, Geophysics, Geosystems, 1(5), 1-41. https://doi.org/10.1029/1999gc000020
  42. Hauff, F.; Hoernle, K.; Tilton, G.; Graham, D.W.; Kerr, A.C. (2000b). Large volume recycling of oceanic lithosphere over short time scales: geochemical constraints from the Caribbean large Igneous Province. Earth and Planetary Science Letters, 174(3-4), 247-263. https://doi.org/10.1016/S0012-821X(99)00272-1
  43. Hoernle, K.; van den Bogaard, P.; Werner, R.; Lissinna, B.; Hauff, F.; Alvarado, G.; Garbe-Schönberg, D. (2002). Missing history (16-71 Ma) of the Galápagos hotspot: implications for the tectonic and biological evolution of the Americas. Geology, 30(9), 795-798. https://doi.org/10.1130/0091-7613(2002)030<0795:MHMOTG>2.0.CO;2
  44. Hoernle, K.; Hauff, F.; van den Bogaard, P. (2004). 70 m.y. history (139–69 ma) for the Caribbean large igneous province. Geology, 32(8), 697-700. https://doi.org/10.1130/G20574.1
  45. Hollocher, K.; Robinson, P.; Walsh, E.; Roberts, D. (2012). Geochemistry of amphibolite-facies volcanics and gabbros of the Støren Nappe in extensions west and southwest of Trondheim, Western Gneiss Region, Norway: a key to correlations and paleotectonic settings. American Journal of Science, 312(4), 357-416. https://doi.org/10.2475/04.2012.01
  46. Humphris, S.E.; Thompson, G. (1978). Hydrothermal alteration of oceanic basalts by seawater. Geochimica et Cosmochimica Acta, 42(1), 107-125. https://doi.org/10.1016/0016-7037(78)90221-1
  47. Jaillard, E.; Lapierre, H.; Ordoñez, M.; Toro-Álava, J.; Amórtegui, A.; Vanmelle, J. (2009). Accreted oceanic terranes in Ecuador: Southern edge of the Caribbean plate? Geological Society, London, Special Publications, 328, 469-485. https://doi.org/10.1144/SP328.19
  48. Kerr, A.C.; Tarney, J.; Marriner, G.F.; Klaver, G.T.; Saunders, A.D.; Thirwall, M.F. (1996). The geochemistry and petrogenesis of the late-Cretaceous picrites and basalts of Curaçao, Netherlands Antilles: a remnant of an oceanic plateau. Contribution to Mineralogy and Petrology, 124, 29-43. https://doi.org/10.1007/s004100050171
  49. Kerr, A.C.; Marriner, G.F.; Tarney, J.; Nivia, A.; Saunders, A.D.; Thirwall, M.F.; Sinton, C.W. (1997). Cretaceous basaltic terranes in Western Colombia: elemental, chronological and Sr-Nd isotopic constraints on petrogenesis. Journal of Petrology, 38(6), 677-702. https://doi.org/10.1093/petroj/38.6.677
  50. Kerr, A.C.; Aspden, J.A.; Tarney, J.; Pilatasig, L.F. (2002). The nature and provenance of accreted oceanic terranes in western Ecuador: geochemical and tectonic constraints. Journal of the Geological Society, 159, 577-594. https://doi.org/10.1144/0016-764901-151
  51. Kerr, A.C.; Pearson, D.G.; Nowell, G.M. (2009). Magma source evolution beneath the Caribbean oceanic plateau: new insights from elemental and Sr-Nd-Pb-Hf isotopic studies of ODP Leg 165 Site 1001 basalts. Geological Society, London, Special Publications 328, 809-827. https://doi.org/10.1144/sp328.31
  52. Kretz, R. (1983). Symbols for rock-forming minerals. American Mineralogist, 68(2), 277-278.
  53. Le Bas, M.J.; Le Maitre, R.W.; Steckeisen, A.; Zanettin, B. (1986). A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27(3), 745-750. https://doi.org/10.1093/petrology/27.3.745
  54. Le Bas, M.J.; Le Maitre, R.W.; Woolley, A.R. (1992). The construction of the total alkali-silica chemical classification of volcanic rocks. Mineralogy and Petrology, 46, 1-22. https://doi.org/10.1007/BF01160698
  55. Le Maitre, R.W. (2002). Igneous rocks: a classification and glossary of terms: recommendations of the international union of geological sciences. Subcomission on the systematics of igneous rocks. Cambridge University Press.
  56. Lewis, J.F.; Escuder-Viruete, J.; Hernaiz-Huerta, P.P.; Gutierrez, G.; Draper, G.; Pérez-Estaún, A. (2002). Subdivisión geoquímica del Arco Isla Circum-Caribeño, Cordillera Central Dominicana: Implicaciones para la formación, acreción y crecimiento cortical en un ambiente intraoceánico. Acta Geológica Hispánica, 37(2-3), 81-122.
  57. Loewen, M.W.; Duncan, R.A.; Kent, A.J.R.; Krawl, K. (2013). Prolonged plume volcanism in the Caribbean large Igneous Province: New insights from Curaçao and Haiti. Geochemistry, Geophysics, Geosystems, 14, 4241-4259. https://doi.org/10.1002/ggge.20273
  58. Lofgren, G. (1971). Spherulitic textures in glassy and crystalline rocks. Journal of Geophysical Research, 76(3), 5635-5648. https://doi.org/10.1029/JB076i023p05635
  59. Londoño, J.; Schiek, C.; Biegert, E. (2015). Basement architecture of the Southern Caribbean Basin, Guajira Offshore, Colombia. En: C. Bartolini, P. Mann (eds.). Petroleum geology and potential of the Colombian Caribbean Margin (pp. 85-102). Vol. 108. AAPG. https://doi.org/10.1306/13531932M1083639
  60. Long, P.E.; Wood, B.J. (1986). Structures, textures, and cooling histories of Columbia River basalt flows. GSA Bulletin, 97(9), 1144-1155. https://doi.org/10.1130/0016-7606(1986)97<1144:STACHO>2.0.CO;2
  61. López, J.A.; Zuluaga, C.A. (2012). Neis de Macuira: evolución tectónica de las rocas metamórficas Paleozoicas de la Alta Guajira, Colombia. Boletín de Geología, 34(2), 15-36.
  62. MacDonald, W.D. (1965). Geology of the Serrania de Macuira area Guajira peninsula, Northeast Colombia. Fouth Caribbean Geological Conference. Arima, Trinidad y Tobago.
  63. Martínez, W.; Hermoza, W.; Espino, D.; Carrington, J.; Pérez, J.; Pate, K.; Rodrigo, M. (2015). Tectono-stratigraphic evolution of the Chichibacoa-Rancherias Basin offshore Colombia. In: C. Bartolini, P. Mann (eds.). Petroleum geology and potential of the Colombian Caribbean Margin (pp. 709-728). Vol. 108. AAPG. https://doi.org/10.1306/13531954M108365
  64. Mauffret, A.; Leroy, S.; Vila, J.M.; Hallot, E.; Mercier de Lépinay, B.; Duncan, R.A. (2001). Prolonged magmatic and tectonic development of the Caribbean Igneous Province revealed by a diving submersible survey. Marine Geophysical Researches, 22, 17-45. https://doi.org/10.1023/A:1004873905885
  65. McDonough, W.F.; Sun, S.S. (1995). The composition of the Earth. Chemical Geology, 120(3-4), 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
  66. Mendi, D.J.; González-Jiménez, J.M.; Proenza, J.A.; Urbani, F.; Gervilla, F. (2020). Petrogenesis of the chromitite body from the Cerro Colorado ophiolite, Paraguaná Peninsula, Venezuela. Boletín de la Sociedad Geológica Mexicana, 72(3), A280719. http://doi.org/10.18268/BSGM2020v72n3a280719
  67. Montes, C.; Rodríguez-Corcho, A.F.; Bayona, G.; Hoyos, N.; Zapata, S.; Cardona, A. (2019). Continental margin response to multiple arc-continent collisions: The northern Andes-Caribbean margin. Earth-Science Reviews, 198, 102903. https://doi.org/10.1016/j.earscirev.2019.102903
  68. Nakamura, N. (1974). Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica et Cosmochimica Acta, 38(5), 757-775. https://doi.org/10.1016/0016-7037(74)90149-5
  69. Neill, I.; Kerr, A.C.; Hastie, A.R.; Stanek, K.P.; Millar, I.L. (2011). Origin of the Aves Ridge and Dutch–Venezuelan Antilles: interaction of the Cretaceous ‘Great Arc’ and Caribbean–Colombian Oceanic Plateau? Journal of the Geological Society, 168, 333-347. https://doi.org/10.1144/0016-76492010-067
  70. Niu, Y.; O’Hara, M.J. (2009). MORB mantle hosts the missing Eu (Sr, Nb, Ta and Ti) in the continental crust: New perspectives on crustal growth, crust–mantle differentiation and chemical structure of oceanic upper mantle. Lithos, 112(1-2), 1-17. https://doi.org/10.1016/j.lithos.2008.12.009
  71. Pearce, J.A. (1983). Role of the sub-continental lithosphere in magma genesis at active continental margins. In: C. Hawkesworth, M. Norry (eds.). Continental basalts and mantle xenoliths (pp. 230-249). Shiva Publishing Ltd.
  72. Pearce, J.A. (2008). Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100(1-4), 14-48. https://doi.org/10.1016/j.lithos.2007.06.016
  73. Pearce, J.A.; Peate, D.W. (1995). Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Sciences, 23, 251-285. https://doi.org/10.1146/annurev.ea.23.050195.001343
  74. Philpotts, J.A.; Schnetzler, C.C. (1968). Europium anomalies and the genesis of basalt. Chemical Geology, 3(1), 5-13. https://doi.org/10.1016/0009-2541(68)90009-0
  75. Pindell, J.L.; Kennan, L. (2009). Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: an update. Geological Society, London, Special Publications, 328, 1-55. https://doi.org/10.1144/SP328.1. 2009
  76. Ramírez-Cárdenas, C.A.; Pujol-Solà, N.; Proenza, J.A.; Weber, M.; Castillo-Oliver, M.; Tobón, M.; García-Casco, A. (2024). Mantle-hosted ophiolitic chromitites from Colombia: implications for petrogenesis and geodynamic evolution. International Geology Review, 66(1), 81-108. https://doi.org/10.1080/00206814.2023.2228361
  77. Ramos, J.P.; Mann, P.; Carvajal‐Arenas, L.C. (2025). Crustal structure and tectonic origin of Late Cretaceous oceanic crust and adjacent Caribbean Large Igneous Province in the Colombian Basin. Geochemistry, Geophysics, Geosystems, 26(2), e2024GC011602. https://doi.org/10.1029/2024GC011602
  78. Révillon, S.; Arndt, N.T.; Chauvel, C.; Hallot, E. (2000a). Geochemical study of ultramafic volcanic and plutonic rocks from Gorgona Island, Colombia: the plumbing system of an oceanic plateau. Journal of Petrology, 41(7), 1127-1153. https://doi.org/10.1093/petrology/41.7.1127
  79. Révillon, S.; Hallot, E.; Arndt, N.T.; Chauvel, C.; Duncan, R.A. (2000b). A Complex History for the Caribbean Plateau: Petrology, Geochemistry, and Geochronology of the Beata Ridge, South Hispaniola. The Journal of Geology, 108(6), 641-661. https://doi.org/10.1086/317953
  80. Riel, N.; Duarte, J.C.; Almeida, J.; Kaus, B.J.P.; Rosas, F.; Rojas-Agramonte, Y.; Popov, A. (2023). Subduction initiation triggered the Caribbean large igneous province. Nature Communications, 14, 786. https://doi.org/10.1038/s41467-023-36419-x
  81. Romito, S.; Mann, P. (2021). Tectonic terranes underlying the present‐day Caribbean plate: Their tectonic origin, sedimentary thickness, subsidence histories and regional controls on hydrocarbon resources. Geological Society, London, Special Publications, 504, 343-377. https://doi.org/10.1144/SP504-2019-221
  82. Rui, H.C.; Yang, J.S.; Zheng, J.P.; Llanes-Castro, A.I.; Liu, F.; Wu, Y.; Wu, W.W.; Valdes-Mariño, Y.; Masoud, A.E. (2022). Early Cretaceous subduction initiation of the proto-Caribbean plate: geochronological and geochemical evidence from gabbros of the Moa-Baracoa ophiolitic massif, Eastern Cuba. Lithos, 418-419, 106674. https://doi.org/10.1016/j.lithos.2022.106674
  83. Saccani, E. (2015). A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th-Nb and Ce-Dy-Yb systematics. Geoscience Frontiers, 6(4), 481-501. https://doi.org/10.1016/j.gsf.2014.03.006
  84. Santamaría, F.; Schubert, C. (1974). Geochemistry and geochronology of the southern Caribbean-northern Venezuela plate boundary. GSA Bulletin, 85(7), 1085-1098. https://doi.org/10.1130/0016-7606(1974)85<1085:GAGOTS>2.0.CO;2
  85. Saunders, A.D.; Norry, M.J.; Tarney, J. (1988). Origin of MORB and chemically-depleted mantle reservoirs: Trace element constraints. Journal of Petrology, 1, 415-445. https://doi.org/10.1093/petrology/Special_Volume.1.415
  86. Sen, G. (2014). Petrology; Principles and Practice. Springer.
  87. Seyfried, W.E.; Mottl, M.J. (1982). Hydrothermal alteration of basalt by seawater under seawater-dominated conditions. Geochimica et Cosmochimica Acta, 46(6), 985-1002. https://doi.org/10.1016/0016-7037(82)90054-0
  88. Shipboard Scientific Party. (1997). Site 1001. En: H. Sigurdsson, R.M. Leckie, G.D. Acton, et al. (eds.). Proceedings of the Ocean Drilling Program, Initial Reports (pp. 291-357). Vol. 165. Texas A&M University. https://doi.org/10.2973/odp.proc.ir.165.106.1997
  89. Sibson, R.H. (1977). Fault rocks and fault mechanisms. Journal of the Geological Society, 133, 191-213. https://doi.org/10.1144/gsjgs.133.3.0191
  90. Sinton, C.W.; Duncan, R.A.; Storey, M.; Lewis, J.; Estrada, J.J. (1998). An oceanic flood basalt province within the Caribbean plate. Earth and Planetary Science Letters 155(3-4), 221-235. https://doi.org/10.1016/S0012-821X(97)00214-8
  91. Sinton, C.W.; Sigurdsson, H.; Duncan, R.A. (2000). Geochronology and petrology of the igneous basement at the lower Nicaraguan rise, Site 1001. En: R.M. Leckie, H. Sigurdsson, G.D. Acton, G. Draper (eds.). Proceedings of the Ocean Drilling Program: Scientific Results (pp. 233-236). Vol. 165. Ocean Drilling Program, Texas A&M University, The National Science Foundation and Joint Oceanographic Institutions, Inc. https://doi.org/10.2973/odp.proc.sr.165.029.2000
  92. Spadea, P.; Espinosa, A.; Orrego, A. (1989). High-Mg extrusive rocks from the Romeral Zone Ophiolites in the Southwestern Colombian Andes. Chemical Geology, 77(3-4), 303-321. https://doi.org/10.1016/0009-2541(89)90080-6
  93. Spikings, R.A.; Simpson, G. (2014). Rock uplift and exhumation of continental margins by the collision, accretion, and subduction of buoyant and topographically prominent oceanic crust. Tectonics, 33(5), 635-655. https://doi.org/10.1002/2013TC003425
  94. Streckeissen, A. (1979). Classification and nomenclatura of volcanic rocks, lamprophyres, carbonatites and melilitic rocks: Recommendations and suggestions of the IUGS Subcomission on the Systematics of Igneous Rocks. Geology, 7(7), 331-335. https://doi.org/10.1130/0091-7613(1979)7<331:CANOVR>2.0.CO;2
  95. Taboada, A.; Rivera, L.A.; Fuenzalida, A.; Cisternas, A.; Philip, H.; Bijwaard, H.; Olaya, J.; Rivera, C. (2000). Geodynamics of the northern Andes: Subductions and intracontinental deformation (Colombia). Tectonics, 19(5), 787-813. https://doi.org/10.1029/2000TC900004
  96. Toro-Toro, L.M.; Moreno-Sánchez, M.; Gómez-Cruz, A. de J.; Giraldo-García, J. (2014). Metagabros de la isla Gran Roque (Venezuela). Geoquímica y petrografía. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 38(148), 312-320. https://doi.org/10.18257/raccefyn.131
  97. Urbani, F. (2017). Distribución de terrenos geológicos del sistema montañoso del Caribe, norte de Venezuela: Síntesis actualizada. Boletín de la Academia de Ciencias Físicas, Matemáticas y Naturales de Venezuela, 77(4), 9-102.
  98. Vence, E.; Mann, P. (2020). Subsurface basement, structure, stratigraphy, and timing of regional tectonic events affecting the Guajira margin of northern Colombia. Interpretation, 8(4), ST69-ST105. https://doi.org/10.1190/INT-2020-0016.1
  99. Vernon, R.H. (2004). A Practical Guide to Rock Microstructure. Cambridge University Press.
  100. Wadge, G.; Jackson, T.A.; Isaacs, M.C.; Smith, T.E. (1982). The ophiolitic Bath-Dunrobin Formation, Jamaica: significance for Cretaceous plate margin evolution in the north-western Caribbean. Journal of the Geological Society, 139(3), 321-333. https://doi.org/10.1144/gsjgs.139.3.0321
  101. Weber, M.B.I.; Cardona, A.; Paniagua, F.; Cordani, U.; Sepúlveda, L.; Wilson, R. (2009). The Cabo de la Vela mafic-ultramafic complex, northeastern Colombian Caribbean region – A record of multi stage evolution of a Late Cretaceous intra-oceanic arc. Geological Society, London, Special Publications, 328, 549-568. https://doi.org/10.1144/SP328.22
  102. Weber, M.; Cardona, A.; Valencia, V.; Altenberger, U.; López-Martínez, M.; Tobón, M.; Zapata, S.; Zapata, G.; Concha, A.E. (2011). Geochemistry and geochronology of the Guajira Eclogites, northern Colombia: evidence of a metamorphosed primitive Cretaceous Caribbean Island-arc. Geologica Acta, 9(3-4), 425-443. https://doi.org/10.1344/105.000001740
  103. Whattam, S.A. (2018). Primitive magmas in the early central American volcanic arc system generated by plume-induced subduction initiation. Frontiers in Earth Sciences, 6, 114. https://doi.org/10.3389/feart.2018.00114
  104. Whattam, S.A.; Stern, R.J. (2015). Late Cretaceous plume-induced subduction initiation along the southern margin of the Caribbean and NW South America: The first documented example with implications for the onset of plate tectonics. Gondwana Research, 27(1), 38-63. https://doi.org/10.1016/j.gr.2014.07.011
  105. White, R.V.; Tarney, J.; Kerr, A.C.; Saunders, A.D.; Kempton, P.D.; Pringle, M.S.; Klaver, G.T. (1999). Modification of an oceanic plateau, Aruba, Dutch Caribbean: implication for the generation of continental crust. Lithos, 46(1), 43-68. https://doi.org/10.1016/S0024-4937(98)00061-9
  106. Wright, J.E.; Wyld, S.J. (2011). Late Cretaceous subduction initiation on the eastern margin of the Caribbean-Colombian Oceanic Plateau: One Great Arc of the Caribbean (?). Geosphere, 7(2), 468-493. https://doi.org/10.1130/GES00577.1
  107. Young, R.A. (1995). The Rietveld Method. International Union Crystallography, Oxford Science Publications.
  108. Zapata-Villada, J.P.; Restrepo, J.J.; Cardona-Molina, A.; Martens, U. (2017). Geoquímica y geocronología de las rocas volcánicas básicas y el Gabro de Altamira, Cordillera Occidental (Colombia): Registro de ambientes de Plateau y arco oceánico superpuestos durante el cretácico. Boletín de Geología, 39(2), 13-30. https://doi.org/10.18273/revbol.v39n2-2017001