Vol. 39 Núm. 2 (2017): Boletín de Geología
Artículos

DATOS DE PRECIPITACIÓN CON EL MODELO HSB PARA PRONÓSTICO DE DESLIZAMIENTO DE SUELOS SUPERFICIALES

Carlos Arturo Peña-Rincón
Facultad de Ingeniería, Universidad Nacional de Colombia. Manizales, Caldas, Colombia. Facultad de Ciencias Exactas e Ingeniería, Universidad Sergio Arboleda. Bogotá, Cundinamarca, Colombia.

Publicado 2017-06-14

Palabras clave

  • Ecuación HSB,
  • Deslizamientos,
  • Factor de seguridad

Cómo citar

Peña-Rincón, C. A. (2017). DATOS DE PRECIPITACIÓN CON EL MODELO HSB PARA PRONÓSTICO DE DESLIZAMIENTO DE SUELOS SUPERFICIALES. Boletín De Geología, 39(2), 49–56. https://doi.org/10.18273/revbol.v39n2-2017003

Altmetrics

Resumen

Se aborda un problema de estabilidad de taludes, mediante la utilización de un modelo basado físicamente con la ecuación diferencial parcial HSB (Hillslope-Storage Boussinesq); utilizada para evaluar deslizamientos superficiales, tomando información de: parámetros geotécnicos, perfil de la ladera y precipitación. Esta ecuación, en este trabajo, se resolvió utilizando métodos de diferencias finitas en el ambiente del lenguaje de python. Se aplicó a una zona teórica y se calculó el factor de seguridad, considerando cinco periodos continuos de precipitación; estos datos fueron tomados de los registros de la estación del EMAS de la ciudad de Manizales. Como resultado se tiene un monitoreo a la estabilidad de la ladera a través del factor de seguridad, influenciado en periodos de 30 minutos, permitiendo realizar un monitoreo de la amenaza de deslizamientos de suelos superficiales por el factor de precipitación.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Abramson, L.W., Lee, T., Sharma, S., and Boyce, G.M. 2002. Slope stability and stabilization methods. 2nd edition, John Wiley and Sons. New York, 45p.
  2. Aristizábal, E., Martínez, H., y Vélez, J.I. 2010. Una revisión sobre el estudio de movimiento en masa detonada por lluvias. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 34(131): 209-227.
  3. Casadei, M., Dietrich, W.E. and Miller, N.L. 2003. Testing a model for predicting the timing and location of shallow landslide initiation in soil-mantled landscapes. Earth Surface Processes and Landforms, 28: 925-950.
  4. Castellanos, R., y González, A. 1996. Relaciones entre la lluvia anual y la lluvia crítica que dispara movimientos en masa. IX Jornadas Geotécnicas de la Ingeniería Colombiana. Bogotá. pp. 462-470.
  5. Chauhan, S., Sharma, M., Arora, M., and Gupta, N. 2010. Landslide susceptibility zonation through rating derived from Artificial Neural Network. International Journal of Applied Earth Observation and Geoinformation, 12(5): 340-350.
  6. Childs, E.C. 1971. Drainage of groundwater resting on a sloping bed. Water Resources Research; 7(5): 1256-1263.
  7. Crosta, G.B., and Frattini, P. 2003. Distributed modelling of shallow landslides triggered by intense rainfall. Natural Hazards and Earth System Sciences, 3: 81-93.
  8. Crozier, M.J. 1986. Landslides: Causes, consequences and environment. Croom Helm. London, 272p.
  9. Cundall, P.A. 1971. A computer model for simulating progressive large scale movements in blocky rock systems. Proceedings of the international symposium on rock fracture, Nancy, October 1971. International Society for Rock Mechanics (ISRM), vol 1, paper no. II–8, pp 129-136.
  10. Cundall, P., and Strack, O. 1979. A discrete numerical model for granular assemblies. Geotechnique, 29(l): 47-65.
  11. Das, B.M. 2006. Principles of geotechnical engineering. 6th edition, Thomson. India, 480p.
  12. Dietrich, W.E., Reiss, R., Hsu, M., and Montgomery, D.R. 1995. A process-based model for colluvial soil depth and shallow landsliding using digital elevation data. Hydrological Processes, 9(3-4): 383-400.
  13. Di Stefano, C., Ferro, V., Porto, P., and Tusa, G. 2000. Slope curvature influence on soil erosion and deposition processes. Water Resources Research, 36(2): 607-617.
  14. Ermini, L., Catani, F., and Casagli, N. 2005. Artificial Neural Networks applied to landslide susceptibility assessment. Geomorphology, 66(1-4): 327-343.
  15. Evans, I.S. 1980. An integrated system of terrain analysis and slope mapping. Zeitschrift für Geomorphologie, Supplementband, 36: 274-295.
  16. Fan, Y., and Bras, R.L. 1998. Analytical solutions to hillslope subsurface storm flow and saturation overland flow. Water Resources Research, 34(4): 921-927.
  17. Gavin, K., and Xue, J. 2008. A simple method to analyze infiltration into unsaturated soil slopes. Computers and Geotechnics, 35(2): 223-230.
  18. González-Gómez, E. 2003. Aspectos geomecánicos de los deslizamientos rápidos: Modelación y diseño de estructuras de contención. Tesis doctoral, Universidad Politécnica de Madrid, España. 427p.
  19. Griffiths, D.V., and Lane, P.A. 1999. Slope stability analysis by finite elements. Geotechnique, 49(3): 387-403.
  20. Huang, Y.H. 1983. Stability analysis of Earth Slopes. Van Nostrand Reinhold Company Inc. New York, 57p.
  21. Iverson, R.M. 2000. Landslide triggering by rain infiltration. Water Resources Research, 36(7): 1897-1910.
  22. Lumb, P. 1975. Slope failure in Hong Kong. Quarterly Journal of Engineering Geology and Hydrogeology, 8: 31-65.
  23. Mayorga-Márquez, R. 2003. Determinación de umbrales de lluvia detonante de deslizamientos en Colombia. Tesis, Universidad Nacional de Colombia, Bogotá. 207p.
  24. Montgomery, D.R., and Dietrich, W.E. 1994. A physically based model for the topographic control on shallow landsliding. Water Resources Research, 30(4): 1153-1171.
  25. Morales, W.F. 2004. Análisis estático y dinámico de estabilidad de taludes por medio de elementos de frontera. Tesis, Universidad Nacional de Colombia. Bogotá. 195p.
  26. Narváez-Bravo, G., y León-Aristízabal, G. 2001. Caracterización y zonificación climática de la región Andina. Meteorología Colombiana, 4: 121-126.
  27. Pradhan, B., Lee, S., and Buchroithner, M. 2010. A GIS-based back-propagation neural network model and its cross-application and validation for landslide susceptibility analyses. Computers, Enviroment and Urban Systems, 34(3): 216-235.
  28. Sabzevari, T., Talebi, A., Ardakanian, R., and Shamsai, A. 2010. A steady-state saturation model to determine the subsurface travel time (STT) in complex hillslopes. Hydrology and Earth System Sciences, 14(6): 891-900.
  29. Scheidegger, A.E. 1998. Tectonic predesign of mass movements with examples from the Chinese Himalaya. Geomorphology, 26(1-3): 37-46.
  30. Smith, I.M. and Griffiths, D.V. 2004. Programming the finite element method. 4th edition, John Wiley and Sons. West Sussex, 646p.
  31. Talebi, A., Uijlenhoet, R., and Troch, P. 2007. Soil moisture storage and hillslope stability. Natural Hazards and Earth System Sciences, 7: 523-534.
  32. Talebi, A. 2008. The relation between geometry, hydrology and stability of complex hillslopes examined using low-dimensional hydrological models. Doctoral Thesis, Wageningen University and Research Center, Wageningen, The Netherlands. 120p.
  33. Talebi, A., Troch, P., and Uijlenhoet, R. 2008. A steady-state analytical slope stability model for complex hillslope. Hydrological Processes, 22(4): 546-553.
  34. Ten Brink, U., Barkan, R., Andrews, B., and Chaytor, J. 2009. Size distributions and failure initiation of submarine and subaerial landslides. Earth and Planetary Science Letters, 287(1-2): 31-42.
  35. Terlien, M. 1996. Modelling spatial and temporal variations in rainfall - triggered landslides. PhD thesis, International Institute for Aerospace Survey and Earth Sciences (ITC). Enschede, the Netherlands. 233p.
  36. Troch, P., Van Loon, E., and Hilberts, A. 2002. Analytical solutions to a hillslope-storage kinematic wave equation for subsurface flow. Advances in Water Resources, 25(6): 637-649.
  37. Troch, P., Paniconi, C., and Van Loon, E. 2003. Hillslope-storage Boussinesq model for subsurface flow and variable source areas along complex hillslopes: 1. Formulation and characteristic response. Water Resource Research, 39(11): 1316.
  38. Troch, P., Van Loon, E., and Hilberts, A. 2004. Analytical solution of linearized hillslope-storage Boussinesq equation for exponential hillslope width function. Water Resource Research, 40(8).
  39. Van Asch, T., Buma, J., and Van Beek, L. 1999. A view on some hydrological triggering systems in landslides. Geomorphology, 30(1-2): 25-32.
  40. Van Beek, L. 2002. Assessment of the influence of changes in land use and climate on landslide activity in a Mediterranean environment. PhD thesis, Faculteit Ruimtelijke Wetenschappen, Universiteit Utrecht, Utrecht. 363p.
  41. Vásquez, L.R. 2008. Modelación numérica de la respuesta hidrológica de taludes. Tesis de Maestría, Universidad Nacional de Colombia, Bogotá. 117p.
  42. Vélez, J.I., Villarraga, M.R, Alvarez, O.D, Alarcón, J.E., y Quintero, F. 2005. Modelo distribuido para determinar la susceptibilidad al deslizamiento superficial por efecto de tormentas intensas y sismos. Boletín de Ciencias de la Tierra, 17: 85-96.
  43. Vittorio, F. 2011. Introduction to the physics of landslides. Springer. New York, 408p.
  44. Wu, W., and Sidle, R.C. 1995. A distributed slope stability model for steep forested basins. Water Resources Research, 31(8): 2097-2110.