Vol. 41 No. 3 (2019): Boletín de Geología
Articles

Mineralogy and fluid-inclusion microthermometry of the vein with Au-Ag ore of La Aurora mine in the northern part of the Zaragoza–Segovia–Remedios mining district (ZSRMD), Colombia

Diana Lorena Castaño-Dávila
Universidad de Caldas
Bio
Juan Sebastián Hernández-González
Universidade de São Paulo
Bio
Juan Carlos Molano-Mendoza
Universidad Nacional de Colombia
Bio
Andrés Ignacio Rodríguez-Vargas
Minerlab Ltda.
Bio

Published 2019-09-30

Keywords

  • Gold mineralization,
  • Zaragoza–Segovia–Remedios Mining District (ZSMD),
  • fluid inclusions,
  • La Aurora mine

How to Cite

Castaño-Dávila, D. L., Hernández-González, J. S., Molano-Mendoza, J. C., & Rodríguez-Vargas, A. I. (2019). Mineralogy and fluid-inclusion microthermometry of the vein with Au-Ag ore of La Aurora mine in the northern part of the Zaragoza–Segovia–Remedios mining district (ZSRMD), Colombia. Boletín De Geología, 41(3), 107–125. https://doi.org/10.18273/revbol.v41n3-2019005

Altmetrics

Abstract

The gold mineralization related to the vein of La Aurora mine is part of the Zaragoza–Segovia–Remedios Mining District (ZSRMD), located in the eastern flank of Central Cordillera of Colombia. This mineralization is emplaced in metamorphic rocks from Cajamarca Complex and corresponds to a quartz vein with a paragenetic sequence that defines three mineralizing events: i) Stage I with mineral associations Qz+Py+Ccp+Po, ii) Stage II with paragenesis among minerals such as Qz+Chl+Ser+Cal+Py+Ccp+Gn+Au+Sp+Ant and iii) Stage III with associations among minerals Qz+Ser+Cal+Py+Ccp+Gn+Au+Rt+Sp+Gth+Mrc. Mineralizing fluids with the gold formation (stages II and III) are of low salinity and the temperatures between 165.8°C and 262.9°C. The vein contains two types of biphasic primary fluid inclusions (LV) in quartz of the stage II and one type of secondary fluid inclusions: Type IL with a homogenization temperature (Th) between 165.8°C to 195°C and salinity between 4.3 to 5.9 wt % NaCl eq.; Type IIL with homogenization temperature (Th) between 200°C to 262.9°C and salinity between 5.9 to 11.6 wt % NaCl eq.; Type V are monophase inclusions with sizes smaller than 5 μ. The ratios between gold/silver and other metals are variable, with average values of Au/Ag=1.24, Au/Bi=1.02, Au/Pb=0.01, Au/Zn=0.02, Ag/Bi=0.75, Ag/Pb=0.01 and Ag/Zn=0.03. Physical and chemical properties calculated with the measured data from fluid inclusions and related to the paragenetic sequence, and geochemical analysis suggest that the formation conditions of gold mineralization occurred in shallow crustal levels, possibly in an epithermal system. The Otú–Pericos Fault System possibly controlled the emplacement and spatial distribution of the mineralized vein.

Downloads

Download data is not yet available.

References

Albinson, T., Norman, D.I., Cole, D., and Chomiak, B.A. (2001). Controls on formation of low-sulfidation epithermal deposits in Mexico: constraints from fluid inclusion and stable isotope data. In: T. Albinson, C.E. Nelson (eds.). New mines and discoveries in Mexico and Central America (pp. 1-32). Acapulco: Society of Economic Geologists, Special Publication, vol. 8.

Álvarez, M., Ordóñez-Carmona, O., Valencia, M., y Romero, A. (2007). Geología de la zona de influencia de la Falla Otú en el distrito Segovia-Remedios. Dyna, 74(153), 41-51.

Bakker, R. (2003). Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chemical Geology, 194(1-3), 3-23. doi: 10.1016/S0009-2541(02)00268-1.

Bakker, R. (2011). The use of quantities, units and symbols in fluid inclusion research. XXI European Current Research on Fluid Inclusions, Leoben, Austria.

Bodnar, R.J. (1993). Revised equation and table for determining the freezing point depression of H2O-NaCl solution. Geochimica et Cosmochimica Acta, 57(3), 683-684. doi: 10.1016/0016-7037(93)90378-A.

Botero, G. (1963). Contribución al conocimiento de la geología de la zona central de Antioquia. Anales de la Facultad de Minas, 57, 3-101.

Camprubí, A. (2010). Criterios para la exploración minera mediante microtermometría de inclusiones fluidas. Boletín de la Sociedad Geológica Mexicana, 62(1), 25-42.

Camprubí, A., y Albinson, T. (2006). Depósitos epitermales en México: actualización de su conocimiento y reclasificación empírica. Boletín de la Sociedad Geológica Mexicana, 58(1), 27-81.

Camprubí, A., González-Partida, E., Levresse, G., Tritlla, J., y Carrillo-Chávez, A. (2003). Depósitos epitermales de alta y baja sulfuración: una tabla comparativa. Boletín de la Sociedad Geológica Mexicana, 56(1), 10-18.

De Caritat, P., Hutcheon, I., and Walshe, J.L. (1993). Chlorite geothermometry: a review. Clays and Clay Minerals, 41(2), 219-239.

Echeverri, B. (2006). Genesis and thermal history of gold mineralization in the Remedios-Segovia-Zaragoza Mining District of Northern Colombia. Master Thesis, University of Shimane, Japón.

Etayo-Serna, F., Barrero, D., Lozano, H., Espinosa, A., González, H., Orrego, A., Ballesteros, I., Forero, H., Ramírez, C., Zambrano, F., Duque, H., Vargas, R., Núñez, A., Álvarez, J., Ropaín, C., Cardozo, E., Galvis, N., Sarmiento, L., Albers, J., Case, J., Singer, D., Bowen, R., Berger, B., Cox, D., y Hodges, C. (1983). Mapa de terrenos geológicos de Colombia. Publicaciones Geológicas Especiales de INGEOMINAS, 14(1), 1-135.

Feininger, T., Barrero, D., y Castro, N. (1972). Geología de parte de los departamentos de Antioquia y Caldas (subzona II-B). Boletín Geológico, 20(2), 1-160.

Feininger, T., Barrero, D., Castro, N., Ramírez, O., Lozano, H., y Vesga, J. (1975). Mapa geológico de la plancha 117, Amalfi Escala 1:100.000. INGEOMINAS, Bogotá, Colombia.

González, H. (1988a). Mapa geológico de la plancha 106 Liberia Escala 1:100.000. INGEOMINAS, Bogotá, Colombia.

González, H. (1988b). Mapa geológico de la plancha 106 Liberia Escala 1:100.000. Memoria explicativa. INGEOMINAS, Bogotá, Colombia.

González, H., Maya, M., Cardona, O.D., Arias, E.N., Castañeda, D.M., Ruiz, C.F., Montero, J.E., Camacho, J.A., Palacio, A.F., Gomez, J.P., Vélez, W., y Alzate, G.A. (2015). Mapa geológico de la plancha 94 El Bagre. Escala 1:100 000. Servicio Geológico Colombiano, Bogotá, Colombia.

González, J., Terá, B., y Ordóñez-Carmona, O. (2010). Geología de la parte oriental del Distrito Minero Segovia - Remedios. Boletín de Ciencias de la Tierra, 28, 61-76.

Hall, R., Álvarez, J., y Rico, H. (1972). Geología de parte de los departamentos de Antioquia y Caldas (Subzona IIA). Boletín Geológico, 20(1), 1-85.

Leal-Mejía, H. (2011). Phanerozoic gold metallogeny in the Colombian Andes - A tectono magmatic approach. Ph.D. Thesis, Universidad de Barcelona, Barcelona, España.

Linke, W.F. (1965). Solubilities of inorganic and metal-organic compounds. 4th ed. Washington: American Chemical Society.

Manco, J.D., Molano, J.C., y Ordóñez-Carmona, O. (2012). Análisis paragenético y microtermométrico de las mineralizaciones auro-argentíferas del distrito minero Segovia-Remedios (DMSR): Implicaciones para la fuente y naturaleza de los fluidos mineralizantes. Boletín de Ciencias de la Tierra, 32, 47-60.

Maya, M., y González, H. (1995). Unidades litodémicas en la Cordillera Central de Colombia. Boletín Geológico, 35(2-3), 43-57.

Nash, J.T. (1976). Fluid inclusion petrology-data from porphyry copper deposits and applications to exploration. USGS Professional Paper 907D.

Nelson, H.W. (1957). Contribution to the geology of the Central and Western Cordillera of Colombia in the sector between Ibague and Cali. Leidse Geologische Mededelingen, 22, 1-75.

Oquendo, Z.E., Guarín, C.G., y Ortiz, B.F. (1970). Ocurrencias minerales en el Noreste de Antioquia parte II: Ocurrencias minerales en los municipios de Zaragoza, Segovia y Remedios. Instituto Nacional de Investigaciones Geológico - Mineras, Medellín, Colombia. Informe 1.

Ordóñez-Carmona, O., Valencia, M., Álvarez, M., Sánchez, L.H., Castaño, L.C., y Echeverri, B. (2005). Metalogenia y evolución tectonomagmática del distrito minero Segovia-Remedios, primera aproximación. X Congreso Colombiano de Geología, Bogotá, Colombia.

Reed, M.H., and Palandri, J. (2006). Sulfide mineral precipitation from hydrothermal fluids. Reviews in Mineralogy and Geochemistry, 61(1), 609-631. doi: 10.2138/rmg.2006.61.11.

Restrepo, J.J., and Toussaint, J.F. (1988). Terranes and continental accretion in the Colombian Andes. Episodes, 11(3), 189-193.

Rodríguez, C.J., y Pernet, A. (1983). Recursos minerales de Antioquía. Boletín Geológico, 26(3), 1-116.

Shepherd, T., Rankin, A.H., and Alderton, D.H.M. (1985). A practical guide to fluid inclusion studies. Glasgow: Blackie.

Sillitoe, R.H. (1995). Exploration and discovery of base and precious metal deposits in the circum-Pacific region during the last 25 years. Society of Resourse Geology, Special Issue, vol. 19.

Toussaint, J.F. (1993). Evolución geológica de Colombia, Precámbrico y Paleozoico. Medellín: Universidad Nacional de Colombia.

Tschanz, C., Marvin, R.F., Cruz, J., Mehnert, H., and Cebula, G. (1974). Geologic evolution of The Sierra Nevada de Santa Marta, Northeastern Colombia. Geological Society of America Bulletin, 85(2), 273-284. doi: 10.1130/0016-7606(1974)85%3c273:GEOTSN%3e2.0.CO;2.

Velasco, F. (2004). Introducción al estudio de las inclusiones fluidas. XXIII Curso Latinoamericano de Metalogénia, Mendoza, Argentina.

Whitney, D.L., and Evans, B.W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1), 185-187. doi: 10.2138/am.2010.3371.

Wilkinson, J.J. (2001). Fluid inclusions in hydrothermal ore deposits. Lithos, 55(1-4), 229-272. doi: 10.1016/S0024-4937(00)00047-5.