3D resistive characterization of the Paipa geothermal area, Colombia
Published 2020-09-30
Keywords
- Magnetotelluric method,
- 3D inversion,
- Geothermal exploration,
- Paipa,
- Colombia
How to Cite
Copyright (c) 2020 Boletín de Geología
This work is licensed under a Creative Commons Attribution 4.0 International License.
Altmetrics
Abstract
In order to performe the electrical characterization of the geothermal area of Paipa, different campaigns were carried out to acquire audiomagnetotellurics (AMT) and magnetotelluric soundings (MT). The estimation of the apparent resistivity curves is in a period range between 0.0001 and 10 s. The geoelectric dimensionality analysis performed to the impedance tensors established a 1D behavior in low periods and a dominant 2D-3D behavior in high periods. In the light of this, a 3D inversion of the area’s electrical structure was performed using the ModEM code and interpreted under the conceptual model of the geothermal system. The presence of a conductive body was identified in the vicinity of the Alto Los Volcanes and Alto Los Godos domes, where the reservoir location has been previously suggested, and is associated with the possible seal layer of the system. Moreover, a series of conductive bodies in apparent structural control, were observed in the center and NW of the area. These bodies are associated with the transit of fluids to the discharge zones at fault intersections. Finally, a resistive body associated with the basement to the southeast of the area was also identified.
Downloads
References
Alfaro, C. (2002a). Geoquímica del sistema geotérmico de Paipa. Informe Técnico, INGEOMINAS, Bogotá, Colombia.
Alfaro, C.M. (2002b). Estudio isotópico de aguas del área geotérmica de Paipa. Informe técnico, INGEOMINAS, Bogotá.
Alfaro, C.M.; Monsalve, M.L.; Franco, J.V.; Ortiz, I. (2012). Contribuciones al modelo conceptual sistema geotérmico de Paipa. Informe técnico, Servicio Geológico Colombiano, Bogotá.
Alfaro, C.; Matiz, J.C.; Rueda, J.; Rodríguez, G.; González, C.; Beltrán, M.; Rodríguez, G.; Malo, J. (2017). Actualización del modelo conceptual del área geotérmica de Paipa. Informe Técnico, Servicio Geológico Colombiano, Bogotá, Colombia.
Arango, C.; Marcuello, A.; Ledo, J.; Queralt, P. (2009). 3D magnetotelluric characterization of the geothermal anomaly in the Llucmajor aquifer system (Majorca, Spain). Journal of Applied Geophysics, 68(4), 479-488. https://doi.org/10.1016/j.jappgeo.2008.05.006
Bibby, H.G.; Caldwell, T.; Brown, C. (2005). Determinable and non-determinable parameters of galvanic distortion in magnetotellurics. Geophysical Journal International, 163(3), 915-930. https://doi.org/10.1111/j.1365-246X.2005.02779.x
Booker, J. (2014). The magnetotelluric phase tensor: a critical review. Surveys in Geophysics, 35(1), 7-40. https://doi.org/10.1007/s10712-013-9234-2
Caldwell, T.G.; Bibby, H.M.; Brown, C. (2004). The magnetotelluric phase tensor. Geophysical Journal International, 158(2), 457-469.
https://doi.org/10.1111/j.1365-246X.2004.02281.x
Cepeda, H.; Pardo, N. (2004). Vulcanismo en Paipa. Informe Técnico, INGEOMINAS, Bogotá, Colombia.
Chave, A.; Jones, A. (2012). The Magnetotelluric Method, Theory and Practice. Cambridge University Press. https://doi.org/10.1017/CBO9781139020138
Cumming, W.; Mackie, R. (2010). Resistivity imaging of geothermal resources using 1D, 2D and 3D MT inversion and TDEM static shift correction illustrated by a glass mountain case history. World Geothermal Congress 2010, Bali, Indonesia.
Egbert, G.; Kelbert, A. (2012). Computational recipes for electromagnetic inverse problems. Geophysical Journal International, 189(1), 251-267.
https://doi.org/10.1111/j.1365-246X.2011.05347.x
Gamble, T.; Goubau, W.M.; Clarke, J. (1979). Magnetotellurics with a remote magnetic reference. Geophysics, 44(1), 53-68. https://doi.org/10.1190/1.1440923
González, L.; Vásquez, L.; Muñoz, R.; Gomes, H.; Parrado, G.; Vargas S. (2008). Exploración de recursos energéticos exploración de uranio en Paipa, Iza, Pesca, Chivata (Boyacá). Informe técnico, INGEOMINAS, Bogotá.
González-Idárraga, C.E.; Rodríguez-Rodríguez, G.F. (2017). Modelo Resistivo del área geotérmica de Paipa a partir de datos magnetotelúricos. Informe técnico, Servicio Geológico Colombiano, Bogotá.
Japan Consulting Institute. (1983). Feasibility study report of geothermal power plant for Instituto Colombiano de Energía Eléctrica (Electrificadora
de Boyacá). Bogotá. 74 p.
Kelbert, A.; Meqbel, N.; Egbert, G.D.; Tandon, K. (2014). ModEM: a modular system for inversion of electromagnetic geophysical data. Computer & Geosciences, 66, 40-53. https://doi.org/10.1016/j.cageo.2014.01.010
Kiyan, D.; Jones, A.G.; Vozar, J. (2014). The inability of magnetotelluric off-diagonal impedance tensor elements to sense oblique conductors in threedimensional inversion. Geophysical Journal International, 196(3), 1351-1364. https://doi.org/10.1093/gji/ggt470
Llanos, E.M.; Bonet, C.; Zengerer, M. (2015). 3D geological - geophysical model building and forward and inverse modeling of magnetism and gravimetry data from Paipa geothermal area, Colombia. Informe técnico, Servicio Geológico Colombiano - Intrepid Geophysics, Bogotá.
Moyano, I.E.; Vallejo, E.F. (2015). Contribution to the knowledge of the Paipa geothermal system by the application of the magnetotelluric method. World Geothermal Congress 2015. Melbourne, Australia.
Muñoz, G. (2014). Exploring for geothermal resources with electromagnetic methods. Surveys in Geophysics, 35(1), 101-122. https://doi.org/10.1007/s10712-013-9236-0
OLADE; BID (1994). Guia para estudios de reconocimiento y prefactibilidad geotermico. Serie: Documentos de OLADE. Quito, Ecuador.
OLADE; GEOTÉRMICA ITALIANA; ICEL; CONTECOL. (1982). Estudio de reconocimiento de los recursos geotérmicos de la república de Colombia. 7 volúmenes. Pisa: Organización Latinoamericana de Energía, Geotérmica Italiana Srl, Instituto Colombiano de Energía Electrica, Contecol ltda.
Ortiz, I. (2014). Informe de revisión de la geología estructural en el área geotérmica de Paipa – Boyacá. Informe técnico, Servicio Geológico Colombiano, Bogotá.
Ortiz, I.; Alfaro, C. (2010). Inventario de puntos de agua y geoquímica de las áreas geotérmicas de Paipa e Iza: aguas, suelos y peloides. Informe técnico,
INGEOMINAS, Bogotá, Colombia.
Pardo, N. (2004). Mapa geológico de Vulcanitas de Paipa, Planchas 171 y 191. Mapa escala 1:25.000. INGEOMINAS, Bogotá.
Parkinson, W.D. (1959). Directions of rapid geomagnetic fluctuations. Geophysical Journal International, 2(1), 1-14.
https://doi.org/10.1111/j.1365-246X.1959.tb05776.x
Peacock. J.R.; Thiel, S.; Reid. P.; Messellier. M.; Heinson, G. (2012). Monitoring enhanced geothermal fluids with magnetotellurics, test case: Paralana, South
Australia. 37th Workshop on Geothermal Reservoir Engineering, Stanford, California.
Rodríguez, G.; Alfaro, C. (2015). Caracterización de núcleos de perforación en las zonas de El Durazno, Paipa y criptodomo de Iza. Informe técnico, Servicio Geológico Colombiano, Bogotá.
Romero, G.; La Terre, E.F.; Paneto, L.P.; Fontes, S.L. (2019). Upper crustal structures of the southeast edge of Parnaiba basin using 3D magnetotelluric data imaging. Journal of South American Earth Sciences, 96. https://doi.org/10.1016/j.jsames.2019.102392
Rueda-Gutiérrez, J. (2017). Cartografía de los cuerpos dómicos del área geotérmica de Paipa. Informe técnico, Servicio Geológico Colombiano, Bogotá, Colombia.
SGC. (2016). Modelo hidrogeológico de Boyacá Centro. Informe técnico, Grupo de Exploración de Aguas Subterráneas, Servicio Geológico Colombiano, Bogotá.
Simpson, F.; Bahr, K. (2005). Practical Magnetotellurics. Cambridge University Press. https://doi.org/10.1017/CBO9780511614095
Siripunvaraporn, W. (2012). Three-dimensional magnetotelluric inversion: an introductory guide for developers and users. Surveys in Geophysics, 33(1), 5-27. https://doi.org/10.1007/s10712-011-9122-6
Spichak, V.; Manzella, A. (2009). Electromagnetic sounding of geothermal zones. Journal of Applied Geophysics, 68(4), 459-478. https://doi.org/10.1016/j.jappgeo.2008.05.007
Ussher, G.; Harvey, C.; Johnstone, R.; Anderson, E. (2000). Understanding the resistivities observed in geothermal systems. World Geothermal Congress, Kyushu, Japan.
Van Leeuwen, W.A. (2016). Geothermal exploration using the magnetotelluric method. PhD Thesis, Utrecht University, Netherlands.
Vásquez, L. (2012). Aplicación geofisica de métodos potenciales en el área geotérmica Paipa-Iza. Informe técnico, Servicio Geológico Colombiano, Bogotá.
Velandia, F. (2003). Cartografía geológica y estructural sector sur del municipio de Paipa. Informe técnico, INGEOMINAS. Bogotá, Colombia.
Velandia, F.; Cepeda, H. (2004). Geología sector del sur del municipio de Paipa (Boyacá) planchas 171 y 191. Mapa escala 1:25.000. INGEOMINAS, Bogotá.
Volpi, G.; Manzella, A.; Fiordelisi, A. (2003). Investigation of geothermal structures by magnetotellurics (MT): an example from the Mt. Amiata area, Italy. Geothermics, 32(2), 131-145. https://doi.org/10.1016/S0375-6505(03)00016-6
Vozoff, K. (1972). The magnetotelluric method in the exploration of sedimentary basins. Geophysics, 37(1), 98-141. https://doi.org/10.1190/1.1440255
Vozoff, K. (1991). The magnetotelluric method. In: M. Nabighian (ed.). Electromagnetic methods in applied geophysics (pp. 641-712). Volume 2, application, parts A and B. Society of Exploration Geophysicists. https://doi.org/10.1190/1.9781560802686.ch8