The carbonate platform of the Upper Tibasosa Formation, Lower Cretaceous, Eastern Cordillera Basin, Firavitoba-Boyacá, Colombia
Published 2021-01-07
Keywords
- Limestones,
- Diagenesis,
- Eastern Cordillera Basin,
- Upper Tibasosa Formation,
- Cathodoluminescence (CL)
How to Cite
Copyright (c) 2021 Boletín de Geología
This work is licensed under a Creative Commons Attribution 4.0 International License.
Altmetrics
Abstract
The Tibasosa Formation is the main source of limestones in Boyacá. This unit corresponds to a Valanginian-Albian age according to the fossil content in the Eastern Cordillera Basin, recording the first incursion of the Cretaceous sea in Firavitoba. Outcrop-based facies and stratigraphic analyzes of the ~12 m-thick siliciclastic-carbonate succession of the uppermost Tibasosa Formation indicate tidal and carbonate systems. Ten facies/microfacies are grouped into two facies associations (FAs): FA1, tidal flat deposits consist of laminated sandstones/siltstones and floatstones with a single organism dominance (bivalve shells); and FA2 comprises fossiliferous rudstones, floatstones, packstones, and wackstones, representing a carbonate platform. The petrographic description determined rock textures/genesis and the diagenetic sequence with features of the eodiagenesis, mesodiagenesis, and telodiagenesis suggesting a primary origin of these carbonates. The analysis using cathodoluminescence (CL), energy disperse spectrometry (EDS), and scanning electron microscopy (SEM) allowed identify compositional differences, cementation phases, and morphological features in different processes as micritization, neomorphism, porosity, pyritization, compaction, cementation, fracturing, and weathering. The interpretation of facies and microfacies indicated a deposition mainly in a shallow platform with variation in the hydraulic conditions, warm waters, and episodic events of storms/tsunamis that fragmented the bioclasts. A shallow marine system in the Eastern Cordillera Basin during Cretaceous indicates a large transgressive event that flooded hundreds of kilometers, being a link with the Pacific Ocean before the Andes uplift. The main diagenetic events correspond to micritization, cementation of calcite, and mechanical/chemical compaction as a result of microbial activity, dissolution, precipitation in the vadose/phreatic zone, and burial diagenesis. The diagenetic sequence events reveal the incidence of marine and meteoric process that reduced porosity and attest to the microbial activity in carbonate precipitated. This new interpretation allows the understanding of carbonate platforms in the Eastern Cordillera Basin for future correlations of the Cretaceous sea in Colombia.
Downloads
References
Barragán, R.; Melinte, M.C. (2006). Palaeoenvironmental and palaeobiologic changes across the Barremian/Aptian boundary interval in the Tethys Realm, Mexico and Romania. Cretaceous Research, 27(4), 529-541. https://doi.org/10.1016/j.cretres.2005.10.016
Berner, R.A. (1984). Sedimentary pyrite formation: an update. Geochimica et Cosmochimica Acta, 48(4), 605-615. https://doi.org/10.1016/0016-7037(84)90089-9
Boggs Jr., S. (2006). Principles of sedimentology and stratigraphy. (4th ed.). Pearson Education, Inc.
Bruna, P.O.; Lavenu, A.P.C.; Matonti, C.; Bertotti, G. (2019). Are stylolites fluid-flow efficient features? Journal of Structural Geology, 125, 270-277. https://doi.org/10.1016/j.jsg.2018.05.018
Cabral, F.A.A.; da Silveira, A.C.; Ramos, G.M.S.; de Miranda, T.S.; Barbosa, J.A.; Neumann, V.H.M.L. (2019). Microfacies and diagenetic evolution of the limestones of the upper part of the Crato Formation, Araripe Basin, northeastern Brazil. Brazilian Journal of Geology, 49(1). https://doi.org/10.1590/2317-4889201920180097
Cediel, F. (1968). El grupo Girón, una molasa mesozoica de la Cordillera Oriental. Boletín Geológico, 16(1-3), 5-96.
Choquette, P.W.; Pray, L.C. (1970). Geologic nomenclature and classification of porosity in sedimentary carbonates. AAPG Bulletin, 54(2), 207-250. https://doi.org/10.1306/5D25C98B-16C1-11D7-8645000102C1865D
Coniglio, M. (1989). Neomorphism and cementation in ancient deep-water limestones, Cow Head Group (Cambro-Ordovician), western Newfoundland, Canada. Sedimentary Geology, 65(1-2), 15-33. https://doi.org/10.1016/0037-0738(89)90003-1
Cooper, M.A.; Addison, F.T.; Alvarez, R.; Coral, M.; Graham, R.H.; Hayward, A.B.; Howe, S.; Martinez, J.; Naar, J.; Peñas, R.; Pulham, A.J.; Taborda, A. (1995). Basin development and tectonic history of the Llanos Basin, Eastern Cordillera, and Middle Magdalena Valley, Colombia. AAPG Bulletin, 79(10), 1421-1443. https://doi.org/10.1306/7834D9F4-1721-11D7-8645000102C1865D
da Silva, P.A.S. (2019). O mar epicontinental Itaituba na região central da Bacia do Amazonas: paleoambiente e correlação com os eventos paleoclimáticos e paleoceanográficos do carbonífero. Ph.D. Tese, Federal University of Pará, Belém, Pará, Brazil.
da Silva, P.A.S.; Afonso, J.W.L.; Soares, J.L.; Nogueira, A.C.R. (2015). Depósitos de plataforma mista, Neocarbonífero da bacia do Amazonas, região de Uruará, Estado do Pará. Geologia USP, Série Científica, 15(2), 79-98. https://doi.org/10.11606/issn.2316-9095.v15i2p79-98
Dickson, J.A.D. (2019). Morphological analysis of archetypal calcite cement. Journal of Sedimentary Research, 89(1), 66-87. https://doi.org/10.2110/jsr.2019.4
Dunham, R.J. (1962). Classification of carbonate rocks according to depositional texture. In: W. Ham (Ed.). Classification of carbonate rocks (pp. 108-121). Vol. 1, American Association of Petroleum Geologists Memoirs.
Ehrenberg, S.N.; Baek, H. (2019). Deposition, diagenesis and reservoir quality of an Oligocene reefal-margin limestone succession: Asmari Formation, United Arab Emirates. Sedimentary Geology, 393-394. https://doi.org/10.1016/j.sedgeo.2019.105535
Embry, A.F.; Klovan, J.E. (1971). A late Devonian reef tract on Northeastern Banks Island, NWT. Bulletin of Canadian Petroleum Geology, 19(4), 730-781.
Flügel, E. (2004). Microfacies of carbonate rocks. Analysis, interpretation, and application. Springer-Verlag. Heidelberg.
Hiatt, E.E.; Pufahl, P.K. (2014). Cathodoluminescence petrography of carbonate rocks: application to understanding diagenesis, reservoir quality, and pore system evolution. In: I. Coulson (ed.). Cathodoluminescence and its application to geoscience (pp. 75-96). Vol. 45. Mineralogical Association of Canada, Short Course Series.
Hoedemaeker, P.J.; Herngreen, G.F.W. (2003). Correlation of Tethyan and Boreal Berriasian – Barremian strata with emphasis on strata in the subsurface of the Netherlands. Cretaceous Research, 24(3), 253-275. https://doi.org/10.1016/S0195-6671(03)00044-2
Humphrey, E.; Gomez-Rivas, E.; Koehn, D.; Bons, P.D.; Neilson, J.; Martín-Martín, J.D.; Schoenherr, J. (2019). Stylolite-controlled diagenesis of a mudstone carbonate reservoir: A case study from the Zechstein_2_Carbonate (Central European Basin, NW Germany). Marine and Petroleum Geology, 109, 88-107. https://doi.org/10.1016/j.marpetgeo.2019.05.040
James, N.P.; Coquette, P.W. (1990). Limestones: the sea floor diagenetic environment. In: I. Mcllrealth; D. Morrow (eds.). Diagenesis (pp. 13-34). Geoscience Canada.
Javanbakht, M.; Wanas, H.A.; Jafarian, A.; Shahsavan, N.; Sahraeyan, M. (2018). Carbonate diagenesis in the Barremian-Aptian Tirgan Formation (Kopet-Dagh Basin, NE Iran): Petrographic, geochemical and reservoir quality constraints. Journal of African Earth Sciences, 144, 122-135. https://doi.org/10.1016/j.jafrearsci.2018.04.016
Julivert, M. (1970). Cover and basement tectonics in the cordillera Oriental of Colombia, South America, and a comparison with some other folded chains. GSA Bulletin, 81(12), 3623-3646. https://doi.org/10.1130/0016-7606(1970)81[3623:CABTIT]2.0.CO;2
Khan, M.; Khan, M.A.; Shami, B.A.; Awais, M. (2018). Microfacies analysis and diagenetic fabric of the Lockhart Limestone exposed near Taxila, Margalla Hill Range, Punjab, Pakistan. Arabian Journal of Geosciences, 11(29). https://doi.org/10.1007/s12517-017-3367-4
Kiessling, W.; Flügel, E.; Golonka, J. (2003). Patterns of Phanerozoic carbonate platform sedimentation. Lethaia, 36(3), 195-225. https://doi.org/10.1080/00241160310004648
Li, J.; Cai, Z.; Chen, H.; Cong, F.; Wang, L.; Wei, Q.; Luo, Y. (2018). Influence of differential diagenesis on primary depositional signals in limestone-marl alternations: an example from Middle Permian marine successions, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 495, 139-151. https://doi.org/10.1016/j.palaeo.2018.01.002
Maliva, R.G.; Siever, R. (1988). Mechanism and controls of silicification of fossils in limestones. The Journal of Geology, 96(4), 387-398. https://doi.org/10.1086/629235
Milliken, K. (2003). Diagenesis. In: G. Middleton (Ed.). Encyclopedia of sediments (pp. 214-219). Kluwer Academic Publishers.
Miranda, G.A.; Niño, C.M. (2016). Evaluación geológica, caracterización geomecánica y cálculo de recurso de roca caliza para el Contrato de Concesión Minera OG2-100 11 en la vereda Las Monjas del municipio de Firavitoba. Tesis, Universidad Pedagógica y Tecnológica de Colombia, Sogamoso, Colombia.
Moore, C.; Wade, W. (2013). Carbonate reservoir: porosity and diagenesis in a sequence stratigraphic framework. (2nd ed.). Elsevier.
Morad, S.; Suwaidi, M.A.; Mansurbeg, H.; Morad, D.; Ceriani, A.; Paganoni, M.; Al-Aasm, I. (2019). Diagenesis of a limestone reservoir (Lower Cretaceous), Abu Dhabi, United Arab Emirates: Comparison between the anticline crest and flanks. Sedimentary Geology, 380, 127-142. https://doi.org/10.1016/j.sedgeo.2018.12.004
Nichols, G. (2009). Sedimentology and stratigraphy. (2nd ed.). Wiley-Blackwell.
Patarroyo, P. (2002). Equinoideos del Miembro Calcáreo Superior, Formación Tibasosa, en el área de Firavitoba (Boyacá - Colombia). Morfología y fauna asociada. Geología Colombiana, 27, 95-107.
Patarroyo, P.; Rojas, A.; Salamanca, A. (2014). Stratigraphy of the Lower Calcareous Member (Valanginian - Hauterivian), Tibasosa Formation, Tibasosa – Boyacá (Colombia, S.A.). 23rd Latin American Colloquium on Earth Science, Heidelberg, Germany.
Patarroyo, P. (2020). Barremian deposits of Colombia: A special emphasis on marine successions. In: J. Gómez; A.O. Pinilla-Pachon (eds.). The Geology of Colombia (pp. 445-474) Volume 2. Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.36.2019.12
Pomar, L. (2001). Types of carbonate platforms: a genetic approach. Basin Research, 13(3), 313-334.
Puga-Bernabéu, A.; Aguirre, J. (2017). Contrasting storm- versus tsunami-related shell beds in shallow-water ramps. Palaeogeography, Palaeoclimatology, Palaeoecology, 471, 1-14. https://doi.org/10.1016/j.palaeo.2017.01.033
Quintero, W.; Ladino, A.; Lozano, E.; Bolívar, O.; Zamora, N.; Rincón, J.; Puentes, M. (2014). Mapa de profundidad de la isoterma de Curie para Colombia. Bogotá: Servicio Geológico Colombiano.
Renzoni, G. (1981). Geología del cuadrángulo J-12 Tunja. Boletín Geológico, 24(2), 31-54.
Renzoni, G.; Rosas, H. (1967). Geología de la Plancha 171 Duitama. Ingeominas.
Renzoni, G.; Rosas, H.; Etayo, F. (1998). Geología Plancha 191 Tunja. Ingeominas.
Reyes, I. (1984). Geología de la región Duitama-Sogamoso-Paz de Río (departamento de Boyacá). Universidad Pedagógica y Tecnológica de Colombia.
Reyment, R.A.; Dingle, R.V. (1987). Palaeogeography of Africa during the Cretaceous Period. Palaeogeography, Palaeoclimatology, Palaeoecology, 59, 93-116. https://doi.org/10.1016/0031-0182(87)90076-9
Rojas, A.; Sandy, M.R. (2019). Early Cretaceous (Valanginian) brachiopods from the Rosablanca Formation, Colombia, South America: Biostratigraphic significance and paleogeographic implications. Cretaceous Research, 96, 184-195. https://doi.org/10.1016/j.cretres.2018.12.011
Sallam, E.S.; Afife, M.M.; Fares, M.; van Loon, A.J; Ruban, D.A. (2019). Sedimentary facies and diagenesis of the Lower Miocene Rudeis Formation (southwestern offshore margin of the Gulf of Suez, Egypt) and implications for its reservoir quality. Marine Geology, 413, 48-70. https://doi.org/10.1016/j.margeo.2019.04.004
Sarmiento-Rojas, L.F.; Van Wess, J.D.; Cloetingh, S. (2006). Mesozoic transtensional basin history of the Eastern Cordillera, Colombian Andes: Inferences from tectonic models. Journal of South American Earth Sciences, 21(4), 383-411. https://doi.org/10.1016/j.jsames.2006.07.003
Scholle, P.; Ulmer-Scholle, D. (2003). A colour guide to the petrography of carbonate rocks: grains, textures, porosity, diagenesis. American Association of petroleum geologists.
Seibel, M.J.; James, N.P. (2017). Diagenesis of Miocene, incised valley-filing limestones; Provence, Southern France. Sedimentary Geology, 347, 21-35. https://doi.org/10.1016/j.sedgeo.2016.09.006
Shinn, E.A. (1983). Tidal flats. In: P.A. Scholle; D.G. Bedout; C.H. Moore (eds.). Carbonate depositional environments (pp. 171-210). The American Association of Petroleum Geologists, Tulsa.
Smith, A.G.; Smith, D.G.; Funnell, B.M. (1994). Atlas of Mesozoic and Cenozoic coastlines. Cambridge University Press.
Tada, R.; Siever, R. (1989). Pressure solution during diagenesis. Annual Review of Earth and Planetary Sciences, 17, 89-118. https://doi.org/10.1146/annurev.ea.17.050189.000513
Toussaint, R.; Aharonov, E.; Koehn, D.; Gratier, J.P.; Ebner, M.; Baud, P.; Rolland, A.; Renard, F. (2018). Stylolites: a review. Journal of Structural Geology, 114, 163-195. https://doi.org/10.1016/j.jsg.2018.05.003
Tucker, M.E.; Wright, P. (1990). Carbonate sedimentology. Blackwell Scientific Publications.
Tucker, M.E. (1992). Sedimentary petrology: an introduction. (2nd ed.). Blackwell Scientific Publications.
Ulloa, C.E.; Guerra, A.; Escovar, R. (1998a). Geología de la Plancha 172 Paz de Río. Ingeominas.
Ulloa, C.E.; Rodríguez, E.; Escovar, R. (1998b). Geología de la plancha 192 Laguna de Tota. Ingeominas.
Valencia, F.L.; Laya, J.C. (2020). Deep-burial dissolution in an Oligocene-Miocene giant carbonate reservoir (Perla Limestone), Gulf of Venezuela Basin: Implications on microporosity development. Marine and Petroleum Geology, 113, 104-144. https://doi.org/10.1016/j.marpetgeo.2019.104144
Walker, R.G.; James, N.P. (1992). Facies models reponse to sea level rise. Geological Association of Canada L’Association giologique du Canada.
Wilkin, R.T.; Barnes, H.L. (1997). Formation processes of framboidal pyrite. Geochimica et Cosmochimica Acta, 61(2), 323-339. https://doi.org/10.1016/S0016-7037(96)00320-1