Vol. 45 No. 1 (2023): Boletín de Geología
Artículos científicos

Mineralogical analysis of a residual soil from Medellín Dunite (Colombia) and its influence on physical properties and unsaturated undrained shear strength

Victoria Meza-Ochoa
Politécnico Colombiano Jaime Isaza Cadavid
Álvaro L. Morales
Universidad de Antioquia
Marco Antonio Márquez-Godoy
Universidad Nacional de Colombia

Published 2023-02-28

Keywords

  • Medellín Dunite,
  • Mineralogy of dunite residual soils,
  • Lateritic soils,
  • Oxides and oxi-hydroxides,
  • Unsaturated undrained shear strength

How to Cite

Meza-Ochoa, V., Morales, Álvaro L., & Márquez-Godoy, M. A. (2023). Mineralogical analysis of a residual soil from Medellín Dunite (Colombia) and its influence on physical properties and unsaturated undrained shear strength. Boletín De Geología, 45(1), 87–101. https://doi.org/10.18273/revbol.v45n1-2023004

Altmetrics

Abstract

The residual soils have a physical-mechanical behavior that reflects their formation process. In the present work, a residual soil derived from Medellín Dunite was characterized mineralogically and its influence on the physical properties and unsaturated undrained shear strength was evaluated. The samples were taken in the area adjacent to “Canteras de Colombia”, in Bello municipality (Antioquia, Colombia), on the east side of the Medellín-Bogotá highway. To obtain a relationship between mineralogy and physical-mechanical properties, mineralogical characterization with X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Mössbauer spectroscopy was done to determine the mineral phases present at three depths above 1.80 m in a soil profile derived from Medellín Dunite. The index properties and undrained shear strength of these soils were determined, the latter by the unconfined compressive strength (UCS) test and unconsolidated-undrained (UU) triaxial compression test. The residual soils of Medellín Dunite, have a particular mineralogical composition, which has a significant bearing on their physical-mechanical behavior. The more superficial soils (0.00 a 0.30 m) are richer in iron oxides and hydroxides (hematite, maghemite, and goethite) and aluminum hydroxides (gibbsite), forming bonds between the particles that produce soil aggregation. They are of lateritic behavior and fragile, and present, more significant cohesion and larger undrained shear strength than deeper soils (0.30 m to 1.80 m), these present lower content of oxides and oxi-hydroxides and higher content of silicates like clinochlore and tremolite.

Downloads

Download data is not yet available.

References

  1. Álvarez-Agudelo, J. (1987). Tectonitas Dunitas de Medellín, Departamento de Antioquia, Colombia. Boletín Geológico, 28(3), 9-44.
  2. Araki, M.S. (1997). Aspectos relativos às propriedades dos solos porosos colapsíveis do Distrito Federal. Dissertação de Mestrado em Geotecnia, Universidade de Brasília, Brasil.
  3. ASTM D2216-19. Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. ASTM International, West Conshohocken, PA, 2019. https://doi.org/10.1520/D2216-19
  4. ASTM D854-14. Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. ASTM International, West Conshohocken, PA, 2014. https://doi.org/10.1520/D0854-14
  5. ASTM D4318-17e1. Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International, West Conshohocken, PA, 2017. https://doi.org/10.1520/D4318-17E01
  6. ASTM D422-63(2007)e1. Standard Test Methods for Particle-Size Analysis of Soils. ASTM International, West Conshohocken, PA, 2007. https://doi.org/10.1520/D0422-63R07E01
  7. ASTM D2487-17e1. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, West Conshohocken, PA, 2017. https://doi.org/10.1520/D2487-17E01
  8. ASTM D2166-16. Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. ASTM International, West Conshohocken, PA, 2016. https://doi.org/10.1520/D2166_D2166M-16
  9. ASTM D2850-15. Standard Test Method for Unconsolidated-Undrained Triaxial Compression Test on Cohesive Soils. ASTM International, West Conshohocken, PA, 2015. https://doi.org/10.1520/D2850-15
  10. Bo, M.W.; Aruljarah, A.; Sukmak, P.; Horpibulsuk, S. (2015). Mineralogy and geotechnical properties of Singapore marine clay at Changi. Soils and Foundations, 55(3), 600-613. https://doi.org/10.1016/j.sandf.2015.04.011
  11. Brewer, R. (1964). Fabric and mineral analysis of soils. Wiley & Sons.
  12. Cundy, A.B.; Hopkinson, L. (2005). Electrokinetic iron pan generation in unconsolidated sediments: implications for contaminated land remediation and soil engineering. Applied Geochemistry, 20(5), 841-848. https://doi.org/10.1016/j.apgeochem.2004.11.014
  13. de Graft-Johnson, J.W.S.; Bhatia, H.; Hammond, A.A. (1972). Lateritic gravel evaluation for road construction. Journal of the Soil Mechanics and Foundations Division, 98(11), 1245-1265. https://doi.org/10.1061/JSFEAQ.0001806
  14. Deere, D.; Patton, F. (1971). Slope stability in residual soils. 4th Pan American Conference on Soil Mechanics and Foundation Engineering, San Juan, Puerto Rico.
  15. Echeverri-Ramírez, O. (2005). Efecto de la microestructura en los parámetros de resistencia al esfuerzo cortante de algunos suelos provenientes de rocas ígneas presentes en Medellín. M.Sc. Tesis, Universidad Nacional de Colombia, Medellín, Colombia.
  16. Fookes, P. (1997). Tropical Residuals Soils. Geological Society Professional Handbook.
  17. Fresneda-Saldarriaga, C.; Navarro-Saldarriaga, S.; Valencia-González, Y. (2013). Caracterización geotécnica de un suelo tropical laterítico. INGE CUC, 9(1), 219-230.
  18. Garcia-Casco, A.; Restrepo, J.J.; Correa-Martínez, A.M.; Blanco-Quintero, I.F.; Proenza, J.A.; Weber, M.; Butjosa, L. (2020). The petrologic nature of the “Medellín Dunite” revisited: An algebraic approach and proposal of a new definition of the geological body. In: J. Gómez, A.O. Pinilla-Pachon (ed.). The Geology of Colombia (pp. 45-75), Volume 2, Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.36.2019.02
  19. Gidigasu, M.D. (1972). Mode of formation and geotechnical characteristic of laterite materials of Ghana in relation to soil forming factor. Engineering Geology, 6(2), 79-150. https://doi.org/10.1016/0013-7952(72)90034-8
  20. Kiehl, E. (1979). Manual de Edafologia: Relações Solo – Planta. Editora Agronômica “CERES” Ltda.
  21. Lagarec, K.; Rancourt, D.G. (1998). Mössbauer Spectral Analysis Software for Windows, version 1.0. Department of Physics, University of Ottawa, 1-40.
  22. Larrahondo, J.M.; Choo, H.; Burns, S.E. (2011). Laboratory-prepared iron oxide coatings on sands: Submicron-scale small-strain stiffness. Engineering Geology, 121(1-2), 7-17. https://doi.org/10.1016/j.enggeo.2011.04.009
  23. Little, A.L. (1969). The engineering classification of residual tropical soils. 7th International Conference of Soil Mechanics and Foundation Engineering, México city, México.
  24. Morales, A.L. (2003). An X-ray diffraction study of corrosion products from low carbon steel. Revista de Metalurgia, 39(Extraordinario 1), 28-31.
  25. National Engineering Handbook. (2021). Part 650 Engineering Field Handbook. Elementary Soil Engineering Chapter 4. United States Department of Agriculture, NRCS.
  26. Nogami, J.S.; Villibor, D.F. (1994). Identificação expedita dos grupos de classificação MCT para solos tropicais. X Congreso Brasilero de Mecánica de Suelos e Ingeniería de Fundaciones, São Paulo, Brasil.
  27. Pineda-Jaimes, J.A.; Colmenares-Montañez, J.E. (2008). Efectos de la meteorización en las propiedades de retención de humedad de dos suelos residuales derivados de una granodiorita. Épsilon, 1(10), 9-21.
  28. Quintero-Ramírez, A.; Valencia-González, Y.; Lara-Valencia, L.A. (2017). Variaciones geotécnicas en un suelo tropical causadas por los lixiviados de residuos sólidos urbanos: Escala laboratorial. Boletín de Ciencias de la Tierra, 41, 40-47. https://doi.org/10.15446/rbct.n41.57876
  29. Rahardjo, H.; Aung, K.K.; Leong, E.C.; Rezaur, R.B. (2004). Characteristics of residual soils in Singapore as formed by weathering. Engineering Geology, 73(1-2), 157-169. https://doi.org/10.1016/j.enggeo.2004.01.002
  30. Rodríguez, G.; González, H.; Zapata, G. (2005). Geología de la plancha 147 Medellín Oriental. INGEOMINAS. Comprende mapa a escala 1:50.000 e informe, 312 p.
  31. Romaña, J.F.; Zapata, G.; Giraldo, R.; Valencia, Y. (2009). Efecto de la meteorización en el comportamiento de un suelo tropical del oriente antioqueño. XV Jornadas Geotécnicas de la Ingeniería Colombiana, Bogotá, Colombia.
  32. Serna-Quintana, C.A. (2011). La naturaleza social de los desastres asociados a inundaciones y deslizamientos en Medellín (1930-1990). Historia Crítica, 43, 198-223. https://doi.org/10.7440/histcrit43.2011.11
  33. Shaqour, F.M.; Jarrar, G.; Hencher, S.; Kuisi, M. (2008). Geotechnical and mineralogical characteristics of marl deposits in Jordan. Environmental Geology, 55(8), 1777-1783. https://doi.org/10.1007/s00254-007-1128-5
  34. Sowers, G.F. (1985). Residual Soils in the United States. In: E.W. Brand, H.B. Phillipson (eds.). Sampling and Testing of Residual Soils. A Review of International Practice (pp. 183-191). Scorpion Press.
  35. Suárez, J. (1998). Deslizamientos y estabilidad de taludes en zonas tropicales. Publicaciones UIS.
  36. Tsige, M.; González de Vallejo, L. (1996). Microfábrica de las arcillas azules del Guadalquivir y su relación con los procesos de meteorización. Geogaceta, 20(6), 1324-1327.
  37. Wesley, L.D. (2010). Geotechnical Engineering in Residual Soils. Wiley & Sons, Inc.
  38. Yean-Chin, T.; Chee-Meng, C. (2004). Slope stability and stabilization. In: B.B.K. Huat, G. See-Sew, F.H. Ali (eds.). Tropical Residual Soils Engineering (pp. 169-192). Taylor & Francis Group.