Vol. 44 No. 1 (2022): Boletín de Geología
Artículos científicos

Understanding the sensitivity to the soil properties and rainfall conditions of two physically-based slope stability models

Roberto J. Marin
Landslide Scientific Assessment
Bio
Álvaro J. Mattos
Landslide Scientific Assessment
Bio
Camilo J. Fernández-Escobar
Universidad de Antioquia

Published 2022-01-25

Keywords

  • Shallow landslides,
  • SLIP,
  • Iverson,
  • Intensity,
  • Rainfall,
  • FOSM
  • ...More
    Less

How to Cite

Marin, R. J., Mattos, Álvaro J., & Fernández-Escobar, C. J. (2022). Understanding the sensitivity to the soil properties and rainfall conditions of two physically-based slope stability models. Boletín De Geología, 44(1), 93–109. https://doi.org/10.18273/revbol.v44n1-2022004

Altmetrics

Abstract

Physically-based models have been used to assess landslide susceptibility, hazard, and risk in many regions worldwide. They have also been regarded as valuable tools for landslide prediction and the development or improvement of landslide early warning systems. They are usually validated to demonstrate their predictive capacity, but they are not deeply studied regularly to understand the sensitivity of the input variables and the behavior of the models under many different rainfall scenarios. In this research paper, we studied two distributed physically-based models for shallow landslides: SLIP and Iverson. For this, the first-order second-moment (FOSM) method was used to calculate the contribution of random input variables (soil strength, unit weight, and permeability parameters) to the variance of the factor of safety. Different intensity and duration rainfall events were simulated to assess the response of the models to those rainfall conditions in terms of the factor of safety and failure probability. The results showed that the shear strength (cohesion and friction angle, in order of significance) parameters have the largest contribution to the variance in both models, but they vary depending on geological, geotechnical, and topographic conditions. The Iverson and SLIP models respond in different ways to the variation of rainfall conditions: for shorter durations (e.g. ≤ 8 h), increasing the intensity caused more unstable areas in the SLIP model, while for longer durations the unstable areas were considerably higher for the Iverson model. Understanding those behaviors can be useful for practical and appropriate implementation of the models in landslide assessment projects.

Downloads

Download data is not yet available.

References

  1. Alvioli, M.; Melillo, M.; Guzzetti, F.; Rossi, M.; Palazzi, E.; von Hardenberg, J.; Brunetti, M.T.; Peruccacci, S. (2018). Implications of climate change on landslide hazard in Central Italy. Science of The Total Environment, 630, 1528-1543. https://doi.org/10.1016/j.scitotenv.2018.02.315
  2. AMVA and UNAL. (2018). Estudios básicos de amenaza por movimientos en masa, inundaciones y avenidas torrenciales en los municipios de Caldas, La Estrella, Envigado, Itagüí, Bello, Copacabana y Barbosa, para la incorporación de la gestión del riesgo en la planificación territorial. Medellín: Área Metropolitana del Valle de Aburrá.
  3. Aristizábal, E.; García, E.; Martínez, C. (2015). Susceptibility assessment of shallow landslides triggered by rainfall in tropical basins and mountainous terrains. Natural Hazards, 78(1), 621-634. https://doi.org/10.1007/s11069-015-1736-4
  4. Aristizábal, E.; Vélez, J.I.; Martínez, H.E.; Jaboyedoff, M. (2016). SHIA_Landslide: a distributed conceptual and physically based model to forecast the temporal and spatial occurrence of shallow landslides triggered by rainfall in tropical and mountainous basins. Landslides, 13(3), 497-517. https://doi.org/10.1007/s10346-015-0580-7
  5. Baecher, G.B.; Christian, J.T. (2003). Reliability and statistics in geotechnical engineering. John Wiley and Sons Ltd.
  6. Baum, R.L.; Coe, J.A.; Godt, J.W.; Harp, E.L.; Reid, M.E.; Savage, W.Z.; Schulz, H.; Brien, D.L.; Chleborad, A.F.; McKenna, J.P.; Michael, J.A. (2005). Regional landslide-hazard assessment for Seattle, Washington, USA. Landslides, 2(4), 266-279. https://doi.org/10.1007/s10346-005-0023-y
  7. Baum, R.L.; Godt, J.W.; Savage, W.Z. (2010). Estimating the timing and location of shallow rainfall-induced landslides using a model for transient, unsaturated infiltration. Journal of Geophysical Research: Earth Surface, 115(F3). https://doi.org/10.1029/2009JF001321
  8. Baumann, V.; Bonadonna, C.; Cuomo, S.; Moscariello, M.; Manzella, I. (2018). Slope stability models for rainfall-induced lahars during long-lasting eruptions. Journal of Volcanology and Geothermal Research, 359, 78-94. https://doi.org/10.1016/j.jvolgeores.2018.06.018
  9. Bjerager, P.; Ditlevsen, O. (1983). Influence of uncertainty of local friction angle and cohesion on the stability of slope in Coulomb soil. In: P. Thoft-Christensen (ed.). Reliability Theory and Its Application in Structural and Soil Mechanics (pp. 567-579). Springer Netherlands. https://doi.org/10.1007/978-94-009-6896-7_32
  10. Choo, H.; Min, D.H.; Sung, J.H.; Yoon, H.K. (2019). Sensitivities of input parameters for predicting stability of soil slope. Bulletin of Engineering Geology and the Environment, 78(8), 5671-5685. https://doi.org/10.1007/s10064-019-01503-4
  11. da Silva, A.F.; Talamini, A.A.; Zuquette, L.V. (2021). Engineering geological mapping procedures in data-scarce hillsides for shallow landslide assessments: Applications in southeastern Brazil. Journal of South American Earth Sciences, 111. https://doi.org/10.1016/j.jsames.2021.103489
  12. D’Odorico, P.; Fagherazzi, S.; Rigon, R. (2005). Potential for landsliding: Dependence on hyetograph characteristics. Journal of Geophysical Research: Earth Surface, 110(F1). https://doi.org/10.1029/2004JF000127
  13. DEACIVIL (2015). Actualización y profundización de estudios de amenaza, vulnerabilidad y riesgo en la zona 3 y los barrios El Esmeraldal y La Inmaculada del Municipio de Envigado. Envigado. DEACIVIL S.A.S.
  14. Dou, H.; Han, T.; Gong, X.; Qiu, Z.; Li, Z. (2015). Effects of the spatial variability of permeability on rainfall-induced landslides. Engineering Geology, 192, 92-100. https://doi.org/10.1016/j.enggeo.2015.03.014
  15. Feng, S.; Vardanega, P.J. (2019). A database of saturated hydraulic conductivity of fine-grained soils: probability density functions. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 13(4), 255-261. https://doi.org/10.1080/17499518.2019.1652919
  16. Feng, S.; Vardanega, P.J.; Ibraim, E.; Widyatmoko, I.; Ojum, C. (2019). Permeability assessment of some granular mixtures. Géotechnique, 69(7), 646-654. https://doi.org/10.1680/jgeot.17.T.039
  17. Fenton, G.A.; Griffiths, D.V. (2008). Risk Assessment in Geotechnical Engineering. Wiley. https://doi.org/10.1002/9780470284704
  18. Fernandes, N.F.; Guimarães, R.F.; Gomes, R.A.T.; Vieira, B.C.; Montgomery, D.R.; Greenberg, H. (2004). Topographic controls of landslides in Rio de Janeiro: Field evidence and modeling. Catena, 55(2), 163-181. https://doi.org/10.1016/S0341-8162(03)00115-2
  19. García-Aristizábal, E.F.; Aristizábal, E.; Marín, R.J.; Guzmán-Martínez, J.C. (2019). Implementación del modelo TRIGRS con análisis de confiabilidad para la evaluación de la amenaza a movimientos en masa superficiales detonados por lluvia. TecnoLógicas, 22(44), 111-129. https://doi.org/10.22430/22565337.1037
  20. Guzzetti, F.; Gariano, S.L.; Peruccacci, S.; Brunetti, M.T.; Marchesini, I.; Rossi, M.; Melillo, M. (2020). Geographical landslide early warning systems. Earth-Science Reviews, 200. https://doi.org/10.1016/j.earscirev.2019.102973
  21. Hammond, C.; Hall, D.; Miller, S.; Swetik, P. (1992). Level I stability analysis (LISA) documentation for version 2.0. US Department of Agriculture, Forest Service, Intermountain Research Station.
  22. ISSMGE-TC304. (2021). State-of-the-art review of inherent variability and uncertainty in geotechnical properties and models. (J. Ching and T. Schweckendiek, Eds.). International Society of Soil Mechanics and Geotechnical Engineering (ISSMGE) -Technical Committee of Engineering Practice of Risk Assessment and Management (TC304).
  23. Iverson, R.M. (2000). Landslide triggering by rain infiltration. Water Resources Research, 36(7), 1897-1910. https://doi.org/10.1029/2000WR900090
  24. Kim, D.; Im, S.; Lee, S.H.; Hong, Y.; Cha, K.S. (2010). Predicting the rainfall-triggered landslides in a forested mountain region using TRIGRS model. Journal of Mountain Science, 7(1), 83-91. https://doi.org/10.1007/s11629-010-1072-9
  25. Liao, Z.; Hong, Y.; Kirschbaum, D.; Adler, R.F.; Gourley, J.J.; Wooten, R. (2011). Evaluation of TRIGRS (transient rainfall infiltration and grid-based regional slope-stability analysis)’s predictive skill for hurricane-triggered landslides: a case study in Macon County, North Carolina. Natural Hazards, 58(1), 325-339. https://doi.org/10.1007/s11069-010-9670-y
  26. Lin, W.; Yin, K.; Wang, N.; Xu, Y.; Guo, Z.; Li, Y. (2021). Landslide hazard assessment of rainfall-induced landslide based on the CF-SINMAP model: a case study from Wuling Mountain in Hunan Province, China. Natural Hazards, 106(1), 679-700. https://doi.org/10.1007/s11069-020-04483-x
  27. Listo, F.L.R.; Gomes, M.C.V.; Ferreira, F.S. (2021). Evaluation of shallow landslide susceptibility and factor of safety variation using the TRIGRS model, Serra do Mar Mountain Range, Brazil. Journal of South American Earth Sciences, 107. https://doi.org/10.1016/j.jsames.2020.103011
  28. Lumb, P. (1966). The variability of natural soil strength. Canadian Geotechnical Journal, 3(2), 74-97. https://doi.org/10.1139/t66-009
  29. Marin, R.J. (2020). Physically based and distributed rainfall intensity and duration thresholds for shallow landslides. Landslides, 17(12), 2907-2917. https://doi.org/10.1007/s10346-020-01481-9
  30. Marín, R.J.; García, E.; Aristizábal, E. (2019). Umbrales de lluvia para deslizamientos superficiales basados en modelos físicos: aplicación en una subcuenca del Valle de Aburrá (Colombia). DYNA, 86(210), 312-322. https://doi.org/10.15446/dyna.v86n210.77166
  31. Marin, R.J.; García, E.F.; Aristizábal, E. (2020). Effect of basin morphometric parameters on physically-based rainfall thresholds for shallow landslides. Engineering Geology, 278. https://doi.org/10.1016/j.enggeo.2020.105855
  32. Marín, R.J.; Marín-Londoño, J.; Mattos, Á.J. (2020). Análisis y evaluación del riesgo de deslizamientos superficiales en un terreno montañoso tropical: implementación de modelos físicos simples. Scientia et Technica, 25(1), 164-171. https://doi.org/10.22517/23447214.22171
  33. Marin, R.J.; Mattos, Á. J. (2020). Physically-based landslide susceptibility analysis using Monte Carlo simulation in a tropical mountain basin. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 14(3), 192-205. https://doi.org/10.1080/17499518.2019.1633582
  34. Marin, R.J.; Velásquez, M.F. (2020). Influence of hydraulic properties on physically modelling slope stability and the definition of rainfall thresholds for shallow landslides. Geomorphology, 351. https://doi.org/10.1016/j.geomorph.2019.106976
  35. Marin, R.J.; García, E.F.; Aristizábal, E. (2021a). Assessing the effectiveness of TRIGRS for predicting unstable areas in a tropical mountain basin (Colombian Andes). Geotechnical and Geological Engineering, 39(3), 2329-2346. https://doi.org/10.1007/s10706-020-01630-w
  36. Marin, R.J.; Velásquez, M.F.; Sánchez, O. (2021b). Applicability and performance of deterministic and probabilistic physically based landslide modeling in a data-scarce environment of the Colombian Andes. Journal of South American Earth Sciences, 108. https://doi.org/10.1016/j.jsames.2021.103175
  37. Marin, R.J.; Velásquez, M.F.; García, E.F.; Alvioli, M.; Aristizábal, E. (2021c). Assessing two methods of defining rainfall intensity and duration thresholds for shallow landslides in data-scarce catchments of the Colombian Andean Mountains. Catena, 206. https://doi.org/10.1016/j.catena.2021.105563
  38. Marin, R.J.; Mattos, Á.J.; Marín-Londoño, J. (2021d). Physically-based definition of rainfall thresholds for shallow landslides in a tropical mountain watershed of the Colombian Andes. XIII International Symposium on Landslides. Cartagena.
  39. Materazzi, M.; Bufalini, M.; Gentilucci, M.; Pambianchi, G.; Aringoli, D.; Farabollini, P. (2021). Landslide hazard assessment in a monoclinal setting (Central Italy): Numerical vs. geomorphological approach. Land, 10(6). https://doi.org/10.3390/land10060624
  40. Maula, B.H.; Zhang, L. (2011). Assessment of embankment factor safety using two commercially available programs in slope stability analysis. Procedia Engineering, 14, 559-566. https://doi.org/10.1016/j.proeng.2011.07.070
  41. Mergili, M.; Marchesini, I.; Rossi, M.; Guzzetti F.; Fellin, W. (2014). Spatially distributed three-dimensional slope stability modelling in a raster GIS. Geomorphology, 206, 178-195. https://doi.org/10.1016/j.geomorph.2013.10.008
  42. Michel, G.P.; Kobiyama, M.; Goerl, R.F. (2014). Comparative analysis of SHALSTAB and SINMAP for landslide susceptibility mapping in the Cunha River basin, southern Brazil. Journal of Soils and Sediments, 14(7), 1266-1277. https://doi.org/10.1007/s11368-014-0886-4
  43. Montgomery, D.R.; Dietrich, W.E. (1994). A physically based model for the topographic control on shallow landsliding. Water Resources Research, 30(4), 1153-1171. https://doi.org/10.1029/93WR02979
  44. Montrasio, L.; Valentino, R. (2008). A model for triggering mechanisms of shallow landslides. Natural Hazards and Earth System Sciences, 8(5), 1149-1159. https://doi.org/10.5194/nhess-8-1149-2008
  45. Montrasio, L.; Valentino, R.; Losi, G.L. (2011). Towards a real-time susceptibility assessment of rainfall-induced shallow landslides on a regional scale. Natural Hazards and Earth System Science, 11(7), 1927-1947. https://doi.org/10.5194/nhess-11-1927-2011
  46. Montrasio, L.; Valentino, R.; Terrone, A. (2014). Application of the SLIP Model. Procedia Earth and Planetary Science, 9, 206-213. https://doi.org/10.1016/j.proeps.2014.06.023
  47. Montrasio, L.; Valentino, R.; Meisina, C. (2018). Soil saturation and stability analysis of a test site slope using the shallow landslide instability prediction (SLIP) model. Geotechnical and Geological Engineering, 36(4), 2331-2342. https://doi.org/10.1007/s10706-018-0465-3
  48. Nguyen, T.S.; Likitlersuang, S.; Ohtsu, H.; Kitaoka, T. (2017). Influence of the spatial variability of shear strength parameters on rainfall induced landslides: a case study of sandstone slope in Japan. Arabian Journal of Geosciences, 10(16). https://doi.org/10.1007/s12517-017-3158-y
  49. Pack, R.T.; Tarboton, D.G.; Goodwin, C.N. (1998). The SINMAP approach to terrain stability mapping. 8th Congress of the International Association of Engineering Geology, Vancouver, Canada.
  50. Papa, M.N.; Medina, V.; Ciervo, F.; Bateman, A. (2013). Derivation of critical rainfall thresholds for shallow landslides as a tool for debris flow early warning systems. Hydrology and Earth System Sciences, 17(10), 4095-4107. https://doi.org/10.5194/hess-17-4095-2013
  51. Park, D.W.; Nikhil, N.V.; Lee, S.R. (2013). Landslide and debris flow susceptibility zonation using TRIGRS for the 2011 Seoul landslide event. Natural Hazards and Earth System Sciences, 13(11), 2833-2849. https://doi.org/10.5194/nhess-13-2833-2013
  52. Phoon, K.K.; Kulhawy, F.H. (1999). Characterization of geotechnical variability. Canadian Geotechnical Journal, 36(4), 612-624. https://doi.org/10.1139/t99-038
  53. Raia, S.; Alvioli, M.; Rossi, M.; Baum, R.L.; Godt, J.W.; Guzzetti, F. (2014). Improving predictive power of physically based rainfall-induced shallow landslide models: a probabilistic approach. Geoscientific Model Development Discussions, 6(1), 1367-1426. https://doi.org/10.5194/gmdd-6-1367-2013
  54. Saulnier, G.M.; Beven, K.; Obled, C. (1997). Including spatially variable effective soil depths in TOPMODEL. Journal of Hydrology, 202(1-4), 158-172. https://doi.org/10.1016/S0022-1694(97)00059-0
  55. Schilirò, L.; Montrasio, L.; Mugnozza, G.S. (2016). Prediction of shallow landslide occurrence: Validation of a physically-based approach through a real case study. Science of the Total Environment, 569-570, 134-144. https://doi.org/10.1016/j.scitotenv.2016.06.124
  56. Stockton, E.; Leshchinsky, B.A.; Olsen, M.J.; Evans, T.M. (2019). Influence of both anisotropic friction and cohesion on the formation of tension cracks and stability of slopes. Engineering Geology, 249, 31-44. https://doi.org/10.1016/j.enggeo.2018.12.016
  57. Wang, Y.; Huang, J.; Tang, H. (2020). Global sensitivity analysis of the hydraulic parameters of the reservoir colluvial landslides in the Three Gorges Reservoir area, China. Landslides, 17(2), 483-494. https://doi.org/10.1007/s10346-019-01290-9
  58. Zieher, T.; Schneider-Muntau, B.; Mergili, M. (2017). Are real-world shallow landslides reproducible by physically-based models? Four test cases in the Laternser valley, Vorarlberg (Austria). Landslides, 14(6), 2009-2023. https://doi.org/10.1007/s10346-017-0840-9