Vol. 44 No. 1 (2022): Boletín de Geología
Artículos científicos

The argilokinetic diapirism of the Colombian Caribbean Margin: a review of its sedimentary conditioning factors applied to hydrocarbon exploration

Eduardo Antonio Rossello
Consejo Nacional de Investigaciones Científicas y Técnicas
Bio
Jairo Alonso Osorio
Servicio Geológico Colombiano
Sergio López-Isaza
Universidad de Buenos Aires

Published 2022-01-25

Keywords

  • Mud diapirism,
  • Tectosedimentation,
  • Cretaceous-Neogene,
  • Petroleum systems,
  • Environmental risks,
  • Colombia
  • ...More
    Less

How to Cite

Rossello, E. A. ., Osorio, J. A. ., & López-Isaza, S. . (2022). The argilokinetic diapirism of the Colombian Caribbean Margin: a review of its sedimentary conditioning factors applied to hydrocarbon exploration. Boletín De Geología, 44(1), 15–48. https://doi.org/10.18273/revbol.v44n1-2022001

Altmetrics

Abstract

The morphology and evolution of diapirs and mud volcanoes in the Colombian Caribbean Margin (MCC) located in transgressive Cretaceous to Neogene sedimentary sequences are analyzed in this paper. They are extrusive structures by argilokinesis that show the release of overpressure and fluidized sediments by water and/or hydrocarbons that pierce the surface. From the analogical modeling of the determining factors of origin and geometry, the diapirism mechanisms depend on: i) the lower density of the underlying generating levels compared to the overlying sequences, and ii) the weak sedimentation rates of the overlayered sequences. The progressive exhumation of the Sinú-San Jacinto Belt from the Oligo-Miocene period due to the dextral transpressive tectonic convergence between the South American and Caribbean plates, generated a barrier to sedimentary transport to the North of the Paleo Cauca River. This interruption prevented its direct discharge, forcing it to coalesce into the Magdalena River, increasing the volume of its delta. A provincialism of diapirism is proposed based on the differences in rates and chronologies of the progradation of denser sediments on pelitic sequences associated with conspicuous types of folds: a) to the north (San Jacinto Belt), tangential compressional type with a double plunge, and oriented subparallel to the Caribbean coast, and b) to the south (Sinú Belt), gravitational type with wide synclines and tight anticlines. Better knowledge of the 4D evolution of MCC diapirism contributes to the potential of the underlying oil systems and the prevention of environmental risks in exploratory maneuvers.

Downloads

Download data is not yet available.

References

  1. Aguilera, R. (2011). Geology and hydrocarbon potential Sinú and San Jacinto basins. In: F. Cediel, G.Y. Ojeda, F. Colmenares (eds.). Petroleum geology of Colombia. Vol. 12. Agencia Nacional de Hidrocarburos.
  2. Akhmanov, G.G.; Mazzini, A. (2007). Mud volcanism in elisional basin. International Geological Workshop on Sidoarjo Mud Volcano, Jakarta, Indonesia.
  3. Alfaro, E.; Barrera, D.F.; Rossello, E.A. (2013). Diachronic Cenozoic wrenching in the southwest Colombian Basin. Comunicações Geológicas, 100(1), 55-65.
  4. Ali-Zade, A.; Shnyokov, E.; Grigorianz, B.; Aliev, A.; Rahmanov, R. (1984). Geotectonic conditions of mud volcano manifestation on the Earth and their significance for oil and gas prospects. 27th World Geological Congress Proceedings. C13: 166-172 (in Russian).
  5. Aristizábal, C.O.; Ferrari, A.; Silva, C. (2009). Control neotectónico del diapirismo de lodo en la región de Cartagena, Colombia. Ingeniería, Investigación y Desarrollo, 8(1), 42-50.
  6. Barber, A.; Tjokrosapoetro, S.; Charlton, T. (1986). Mud volcanoes, shale diapirs, wrench faults, and melanges in accretionary complexes, eastern Indonesia. AAPG Bulletin, 70(11), 1729-1741.
  7. Barrero, D.; Pardo, A.; Vargas, C.A.; Martínez, J.F. (2015). Colombian sedimentary basins: nomenclature, boundaries and petroleum geology, new proposal. Agencia Nacional de Hidrocarburos.
  8. Barton, D.C. (1933). Mechanics of formation of salt domes with special reference to Gulf coast salt domes of Texas and Louisiana. AAPG Bulletin, 17(9), 1025-1083. https://doi.org/10.1306/3D932B9C-16B1-11D7-8645000102C1865D
  9. Bernal-Olaya, R.; Sánchez, J.; Mann, P.; Murphy, M. (2015a). Along-strike crustal thickness variations of the subducting Caribbean Plate produces two distinctive styles of thrusting in the offshore South Caribbean Deformed Belt, Colombia. In: C. Bartolini, P. Mann (eds.). Petroleum geology and potential of the Colombian Caribbean Margin (pp. 295-322). AAPG, Memoir 108. https://doi.org/10.1306/13531941M1083645
  10. Bernal-Olaya, R.; Mann, P.; Vargas, C.A. (2015b). Earthquake, tomographic, seismic reflection, and gravity evidence for a shallowly dipping subduction zone beneath the Caribbean margin of northwestern Colombia. In: C. Bartolini, P. Mann (eds.). Petroleum geology and potential of the Colombian Caribbean Margin (pp. 247-270). AAPG, Memoir 108. https://doi.org/10.1306/13531939M1083642
  11. Beeunas, M.A.; Schoell, M.; Beroiz, C. (1991). Geochemistry of natural gases from mud volcanoes and surface gas seeps in NW Colombia. AAPG Annual Convention Dallas, Texas.
  12. Bezada, M.J.; Levander, A.; Schmandt, B. (2010). Subduction in the southern Caribbean: images from finite-frequency P wave tomography. Journal of Geophysical Research: Solid Earth, 115(B12). https://doi.org/10.1029/2010JB007682
  13. Bishop, R.S. (1978). Mechanism for emplacement of piercement diapirs. AAPG Bulletin, 62(9), 1561-1583. https://doi.org/10.1306/C1EA5251-16C9-11D7-8645000102C1865D
  14. Bloch, S.; Lander, R.H.; Bonnell, L. (2002). Anomalously high porosity and permeability in deeply buried sandstone reservoirs: Origin and predictability. AAPG Bulletin, 86(2), 301-328. https://doi.org/10.1306/61EEDABC-173E-11D7-8645000102C1865D
  15. Bonini, M.; Rudolph, M.L.; Manga, M. (2016). Long- and short-term triggering and modulation of mud volcano eruptions by earthquakes. Tectonophysics, 672-673, 190-211. https://doi.org/10.1016/j.tecto.2016.01.037
  16. Bowland, C.L. (1993). Depositional history of the western Colombian Basin, Caribbean Sea, revealed by seismic stratigraphy. GSA Bulletin, 105(10), 1321-1345. https://doi.org/10.1130/0016-7606(1993)105<1321:DHOTWC>2.3.CO;2
  17. Braunstein, G.; O’Brien, G.D. (1968). Diapirism and diapirs. American Association of Petroleum Geologists.
  18. Briceño, L.A.; Vernette, G. (1992). Manifestaciones del diapirismo arcilloso en el margen colombiano del caribe. Earth Sciences Research Journal, 1, 21-30.
  19. Brown, K.M. (1990). The nature and hydrogeologic significance of mud diapirs and diatremes for accretionary systems. Journal of Geophysical Research: Solid Earth, 95(B6), 8969-8982. https://doi.org/10.1029/JB095iB06p08969
  20. Burel, T. (1982). Caractérisation des modalités d’évolution récente de la marge continentale Nord-Colombienne. Bulletin Institute Géologique du Bassin d’Aquitaine (Bordeaux) 21, 161-166.
  21. Bürgl, H. (1965). El límite oligo-mioceno en el terciario marino de Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 12(47), 245-258.
  22. Cadavid, T.; Rico, A. (1992). Amenazas geológicas por volcanismo de lodos para las áreas de Arroyo de Piedra y Galerazamba, departamento de Bolívar. Tesis, Universidad Nacional de Colombia, Medellín.
  23. Carvajal, J.H.; Mendivelso, D.; Forero, H.; Castiblanco, C.R.; Pinzón, L.M.; Prada, M. (2010). Investigación del diapirismo de lodo y evolución costera del Caribe Colombiano. Geomorfología Sector 1. República de Colombia Ministerio de Minas y Energía, Instituto Colombiano de Geología y Minería, Bogotá.
  24. Carvajal, J.H. (2016). Mud diapirism in the Central Colombian Caribbean Coastal Zone. In: M. Hermelin (ed.). Landscapes and Landforms of Colombia (pp. 35-53). Springer. https://doi.org/10.1007/978-3-319-11800-0_3
  25. Carvajal, J.H.; Mendivelso, D. (2017). Volcanismo de lodo del Caribe central colombiano. Servicio Geológico Colombiano.
  26. Castrec-Rouelle, M.; Bourles, D.L.; Boulegue, J.; Dia, A.N. (2002). Beryllium geochemistry constraints on the hydraulic behavior of mud volcanoes: The Trinidad Island case. Earth and Planetary Science Letters, 203(3-4), 957-966. https://doi.org/10.1016/S0012-821X(02)00922-6
  27. Cediel, F.; Shaw, R.P.; Cáceres, C. (2003). Tectonic assembly of the Northern Andean Block. In: C. Bartolini, R.T. Buffler, J. Blickwede (eds.). The Circum-Gulf of Mexico and the Caribbean. Hydrocarbon Habitats, Basin Formation, and Plate Tectonics (pp. 815-848). AAPG, Memoir 79. https://doi.org/10.1306/M79877C37
  28. Cerón, J.F.; Kellogg, J.N.; Ojeda, G.Y. (2007). Basement configuration of the northwestern South America - Caribbean Margin from recent geophysical data. CT&F, Ciencia, Tecnología y Futuro, 3(3), 25-49.
  29. Chamley, H. (1989). Clay sedimentology. Springer-Verlag.
  30. Chiarabba, C.; De Gori, P.; Faccenna, C.; Speranza, F.; Seccia, D.; Dionicio, V.; Prieto, G.A. (2016). Subduction system and flat slab beneath the Eastern Cordillera of Colombia. Geochemistry, Geophysics, Geosystems, 17(1), 16-27. https://doi.org/10.1002/2015GC006048
  31. Cita, M.B.; Ivanov, M.K.; Woodside, J.M. (1996). The Mediterranean Ridge diapiric belt. Marine Geology, 132(1-4), 1-6.
  32. Cobbold, P.; Rossello, E.; Vendeville, B. (1989). Some experiments on interacting sedimentation and deformation above salt horizons. Bulletin de la Société de Géologique de France, 5(3), 453-460. https://doi.org/10.2113/gssgfbull.V.3.453
  33. Cobbold, P.R.; Rossello, E.A.; Roperch, P.; Arriagada, C.; Gómez, L.A.; Lima, C.C. (2007). Distribution, timing, and causes of Andean deformation across South America. Geological Society, London, Special Publications, 272, 321-343. https://doi.org/10.1144/GSL.SP.2007.272.01.17
  34. Cohen, H.A.; McClay, K. (1996). Sedimentation and shale tectonics of the northern Niger Delta front. Marine and Petroleum Geology, 13(3), 313-328. https://doi.org/10.1016/0264-8172(95)00067-4
  35. Correa, I.D. (1998). Amenazas geológicas asociadas al fenómeno del diapirismo de lodos, referencia Urbanización El Rodeo. Concepto técnico para Cardique. Informe inédito, 13 pp., Cartagena de Indias.
  36. Correa, I.; Ríos, A.; González, G.; Toro, M.; Ojeda, G.; Restrepo, I. (2007). Erosión litoral entre Arboletes y Punta San Bernardo, costa caribe colombiana. Boletín de Geología, 29(2), 115-129.
  37. Davies, R.J.; Stewart, S.A. (2005). Emplacement of giant mud volcanoes in the South Caspian Basin: 3D seismic reflection imaging of their root zones. Journal of the Geological Society, 162(1), 1-4. https://doi.org/10.1144/0016-764904-082
  38. Davies, R.J.; Swarbrick, R.E.; Evans, R.J.; Huuse, M. (2007). Birth of a mud volcano: East Java, 29 May 2006. GSA Today, 17, 4-9.
  39. Davies, R.J.; Brumm, M.; Manga, M.; Rubiandini, R.; Swarbrick, R.; Tingay, M. (2008). The East Java mud volcano (2006 to present): an earthquake or drilling trigger? Earth and Planetary Science Letters, 272(3-4), 627-638. https://doi.org/10.1016/j.epsl.2008.05.029
  40. Davison, I.; Insey, M.; Harper, M.; Weston, P.; Blundell, D.; McClay, K.; Qualington, A. (1993). Physical modelling of overburden deformation around salt diapirs. Tectonophysics, 228(3-4), 255-274. https://doi.org/10.1016/0040-1951(93)90344-J
  41. Deville, E.; Guerlais, S.H.; Callec, Y.; Griboulard, R.; Huyghe, P.; Lallemant, S.; Mascle, A.; Noble, M.; Schmitz, J. (2006). Liquefied vs stratified sediment mobilization processes: insight from the South of the Barbados accretionary prism. Tectonophysics, 428(1-4), 33-47. https://doi.org/10.1016/j.tecto.2006.08.011
  42. Deville, E.; Guerlais, S.H. (2009). Cyclic activity of mud volcanoes: evidences from Trinidad (SE Caribbean). Marine and Petroleum Geology, 26(9), 1681-1691. https://doi.org/10.1016/j.marpetgeo.2009.03.002
  43. Dia, A.N.; Castrec-Rouelle, M.; Boulegue, J.; Comeau, P. (1999). Trinidad mud volcanoes: where do the expelled fluids come from? Geochimica et Cosmochimica Acta, 63(7-8), 1023-1038. https://doi.org/10.1016/S0016-7037(98)00309-3
  44. Dimitrov, L.I. (2002). Mud volcanoes - the most important pathway for degassing deeply buried sediments. Earth-Science Reviews, 59(1-4), 49-76. https://doi.org/10.1016/S0012-8252(02)00069-7
  45. Duque-Caro, H. (1984a). Structural style, diapirism, and accretionary episodes of the Sinú-San Jacinto Terrane, southwestern Caribbean borderland. In: W.E. Bonini; R.B. Hargraves; R. Shagam (eds.). The Caribbean-South American plate boundary and regional tectonics. (pp. 303-316). Vol. 162, Geological Society of America. https://doi.org/10.1130/MEM162-p303
  46. Duque-Caro, H. (1984b). Estilo estructural, diapirismo y episodios de acrecimiento del terreno Sinú-San Jacinto en el noroccidente de Colombia. Boletín Geológico, 27(2), 1-29.
  47. Duque-Caro, H. (1990). Neogene stratigraphy, paleoceanography and paleobiogeography in northwest South America and the evolution of the Panama Seaway. Palaeogeography, Paleoclimatology, Palaeoecology, 77(3-4), 203-234. https://doi.org/10.1016/0031-0182(90)90178-A
  48. Dupré, S.; Buffet, G.; Mascle, J., Foucher, J.P.; Gauger, S.; Boetius, A.; Marfia, C. (2008). High-resolution mapping of large gas emitting mud volcanoes on the Egyptian continental margin (Nile Deep Sea Fan) by AUV surveys. Marine Geophysical Researches, 29(4), 275-290. https://doi.org/10.1007/s11001-009-9063-3
  49. Ercilla, G.; Alonso, B.; Estrada, F.; Chiocci, F.L.; Baraza, J.; Farran, M. (2002). The Magdalena Turbidite System (Caribbean Sea): present-day morphology and architecture model. Marine Geology, 185(3-4), 303-318. https://doi.org/10.1016/S0025-3227(02)00182-2
  50. Etiope, G.; Milkov, A. (2004). A new estimate of global methane flux from onshore and shallow submarine mud volcanoes to the atmosphere. Environmental Geology, 46(8), 997-1002. https://doi.org/10.1007/s00254-004-1085-1
  51. Etiope, G.; Feyzullayev, A.; Milkov, A.V.; Waseda, A.; Mizobe, K.; Sun, C.H. (2009). Evidence of subsurface anaerobic biodegradation of hydrocarbons and potential secondary methanogenesis in terrestrial mud volcanoes. Marine and Petroleum Geology, 26(9), 1692-1703. https://doi.org/10.1016/j.marpetgeo.2008.12.002
  52. Flinch, J.F. (2003). Structural evolution of the Sinu-Lower Magdalena area (Northern Colombia). In: C. Bartolini, R. Buffler, J. Blickwede, J. (eds.). The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics (pp. 776-796). AAPG Memoir 79.
  53. Foucher, J.P.; Dupré, S.; Scalabrin, C.; Feseker, T.; Harmegnies, F.; Nouzé, H. (2010). Changes in seabed morphology, mud temperature and free gas venting at the Hakon Mosby Mud volcano, offshore Northern Norway, over the time period 2003-2006. Geo Marine Letters, 30(3-4), 157-167. https://doi.org/10.1007/s00367-010-0193-z
  54. García-Cortés, C.; Trejos-Tamayo, R.; Vallejo-Hincapié, F.; Pardo-Trujillo, A. (2008). Planktonic foraminifera from mud volcanoes of the Sinú-San Jacinto basin. ACGGP Technical Committee, 3pp.
  55. García-González, M.; Bernal-Olaya, R.; Fuentes-Lorenzo, J.L.; García-Ceballos, A.M. (2019). Mud diapirs and mud volcanoes associated with gas hydrates system in the Sinu Fold Belt of Colombia, South Western Caribbean and its significant in the petroleum system. AAPG Asia Pacific Region Geosciences Technology Workshop. Auckland.
  56. Gardner, J. (2001). Mud volcanoes revealed and sampled on the Western Moroccan continental margin. Geophysical Research Letters, 28(2), 339-342. https://doi.org/10.1029/2000GL012141
  57. Goad, S.T. (1816). Miscellaneous observations on the volcanic eruptions at the islands of Java and Sumbawa, with a particular account of the mud volcano at Grobogan. Journal Science Arts, 1, 245-258.
  58. Gómez, A.; Martínez, J.I.; Yokoyama, Y. (2005). El Holoceno tardío en la región de Cartagena: reconstrucción paleoambiental de las terrazas marinas bajas. X Congreso Colombiano de Geología, Bogotá.
  59. Gracia, A.; Rangel-Buitrago, N.; Sellanes, J. (2012). Methane seep molluscs from the Sinú –San Jacinto fold belt in the Caribbean Sea of Colombia. Journal of the Marine Biological Association of the United Kingdom, 92(6), 1367-1377. https://doi.org/10.1017/S0025315411001421
  60. Graham, R.; Pepper, A. (2008). Observations on structures associated with mud diapirism and their role in petroleum charging and trapping. AAPG International Conference and Exhibition, Cape Town, South Africa.
  61. González-Morales, O.; Rodríguez-Madrid, A.L.; Ríos-Reyes, C.A.; Ojeda-Bueno, G.Y. (2015). Relationship between the mud organic matter content and the maximum height of diapiric domes using analog models. CT&F Ciencia, Tecnología y Futuro, 6(2), 17-32.
  62. Graue, K. (2000). Mud volcanoes in deepwater Nigeria. Marine and Petroleum Geology, 17(8), 959-974. https://doi.org/10.1016/S0264-8172(00)00016-7
  63. Guzmán, G.; Gómez, E.; Serrano, B. (2004). Geología de los cinturones del Sinú, San Jacinto y borde occidental del Valle Inferior del Magdalena, Caribe Colombiano. Memoria Técnica INGEOMINAS. 134pp. Bogotá.
  64. Hedberg, H.D. (1974). Relation of methane generation to undercompacted shales, shale diapirs and mud volcanoes. AAPG Bulletin, 58(4), 661-673. https://doi.org/10.1306/83D91466-16C7-11D7-8645000102C1865D
  65. Herrera-Atencio, C.; Díaz-Mendoza, C. (2018). Evaluación geológica, geotécnica y ambiental de los fenómenos de volcanismo de lodos en la costa Caribe colombiana. Scientia et Technica, 23(1), 108-115.
  66. Higgins, G.E.; Saunders, J.B. (1974). Mud volcanoes. Their nature and origin. In: P. Jung, H. Bolli, R. Panchaud, J. Saunders, H. Schaefer, F. Wiedenmayer (eds.). Contributions to the Geology and Paleobiology of the Caribbean and adjacent areas (pp. 101-152). Verhandlungen Naturforschenden Gesselschaft in Basel 84.
  67. Higgs, H. (2009). Caribbean-South America oblique collision model revised. Geological Society, London, Special Publications, 328, 613-657. https://doi.org/10.1144/SP328.25
  68. Horton, B.K. (2018). Sedimentary record of Andean mountain building. Earth-Science Reviews, 178, 279-309. https://doi.org/10.1016/j.earscirev.2017.11.025
  69. Hovland, M.; Hill, A.; Stokes, D. (1997). The structure and geomorphology of the Dashgil mud volcano, Azerbaijan. Geomorphology, 21(1), 1-15. https://doi.org/10.1016/S0169-555X(97)00034-2
  70. Istadi, B.; Pramono, G.H.; Sumintadireja, P.; Alam, S. (2009). Modeling study of growth and potential geohazard for LUSI mud volcano: East Java, Indonesia. Marine and Petroleum Geology, 26(9), 1724-1739. https://doi.org/10.1016/j.marpetgeo.2009.03.006
  71. Istadi, B.P.; Wibowo, H.T.; Sunardi, S.; Hadi, E.; Sawolo, N. (2012). Mud volcano and its evolution. In: I.A. Dar (ed.). Earth Sciences (pp. 375-434). InTech. https://doi.org/10.5772/24944
  72. Ivanov, M.K.; Limonov, A.F.; van Weering, T.C. (1996). Comparative characteristics of the Black Sea and Mediterranean Ridge mud volcanoes. Marine Geology, 132(1-4), 253-271. https://doi.org/10.1016/0025-3227(96)00165-X
  73. Jackson, M.P.A.; Talbot, C.J. (1986). External shapes, strain rates and dynamics of salt structures. GSA Bulletin, 97(3), 305-323. https://doi.org/10.1130/0016-7606(1986)97<305:ESSRAD>2.0.CO;2
  74. Jackson, M.P.A.; Cornelius, R.R.; Craig, C.R.; Gansser, A.; Stöcklin, J.; Talbot, C.J. (1990). Salt diapirs of the Great Kavir, central Iran. Vol. 177. GSA.
  75. Jackson, M.P.A.; Vendeville, B.C. (1994). Regional extension as a geologic trigger for diapirism. GSA Bulletin, 106(1), 57-73. https://doi.org/10.1130/0016-7606(1994)106<0057:REAAGT>2.3.CO;2
  76. Jackson, M.P.A.; Vendeville, B.C.; Schultz-Ela, D.D. (1994). Structural dynamics of salt systems. Annual Review of Earth and Planetary Sciences, 22, 93-117. https://doi.org/10.1146/annurev.ea.22.050194.000521
  77. James, K.H. (2006). Arguments for and against the Pacific origin of the Caribbean Plate: discussion, finding for an inter-American origin. Geologica Acta, 4(1-2), 279-302. https://doi.org/10.1344/105.000000370
  78. James, K.H. (2009). In situ origin of the Caribbean: discussion of data. Geological Society, London, Special Publications, 328, 77-125. https://doi.org/10.1144/SP328.3
  79. James, K.H. (2010). In situ Caribbean - the data. In: James, K.H.; Lorente, M.A.; Pindell, J. (eds.). Geology of the area between North and South America, with focus on the origin of the Caribbean plate. Geological Society of America.
  80. Kellogg, J.N.; Franco-Camelio, G.B.; Mora-Páez, H. (2019). Cenozoic tectonic evolution of the North Andes with constraints from volcanic ages, seismic reflection, and satellite geodesy. In: B.K. Horton, A. Folguera (eds.). Andean Tectonics (pp. 69-102). Chapter 4. Elsevier. https://doi.org/10.1016/B978-0-12-816009-1.00006-X
  81. Kerr, P.F.; Drew, I.M.; Richardson, D.S. (1970). Mud volcano clay, Trinidad, West Indies. AAPG Bulletin, 54(11), 2101-2110. https://doi.org/10.1306/5D25CC71-16C1-11D7-8645000102C1865D
  82. Kerr, A.; Tarney, J. (2005). Tectonic evolution of the Caribbean and northwestern South America: The case for accretion of two Late Cretaceous oceanic plateaus. Geology, 33(4), 269-272. https://doi.org/10.1130/G21109.1
  83. Kholodov, V.N. (1983). Postsedimentary transformations in elisional basins (example from Eastern Pre-Caucasus) (in Russian).
  84. Kopf, A.J. (2002). Significance of mud volcanism. Reviews of Geophysics, 40(2), 1-52. https://doi.org/10.1029/2000RG000093
  85. Kopf, A.J. (2003). Global methane emission through mud volcanoes and its past and present impact on the Earth’s climate. International Journal of Earth Sciences, 92(5), 806-816. https://doi.org/10.1007/s00531-003-0341-z
  86. Ladd, J.W.; Truchan, M.; Talwani, M.; Stoffa, P.L.; Buhl, P.; Houtz, R.; Mauffret, A.; Westbrook, G.K. (1984). Seismic reflection profiles across the southern margin of the Caribbean. In: W.E. Bonini, R.B. Hargraves, R. Shagam (eds.). The Caribbean-South American plate boundary and regional tectonics (pp. 153-159). GSA. https://doi.org/10.1130/MEM162-p153
  87. Limonov, A.; van Weering, T.C.; Kenyon, N.; Ivanov, M.; Meisner, L. (1997). Seabed morphology and gas venting in the Black Sea mud volcano area: observations with the MAK-1 deep-tow sidescan sonar and bottom profiler. Marine Geology, 137(1-2), 121-136. https://doi.org/10.1016/S0025-3227(96)00083-7
  88. Link, W.K. (1952). Significance of oil and gas seeps in world oil exploration. AAPG Bulletin, 36(8), 1505-1540. https://doi.org/10.1306/5CEADB3F-16BB-11D7-8645000102C1865D
  89. Lozano, E.; Zamora, N. (2014). Compilación de las cuencas de Sinú - San Jacinto. Servicio Geológico Colombiano, Tectónica, Geociencias Básicas, Bogotá.
  90. MacDonald, I.R.; Buthman, D.B.; Sager, W.W.; Peccini, M.B.; Guinasso, N.L. (2000). Pulsed oil discharge from mud volcano. Geology, 28(10), 907-910. https://doi.org/10.1130/0091-7613(2000)28<907:PODFAM>2.0.CO;2
  91. Mantilla-Pimiento, A.M. (2007). Crustal structure of the SW Colombian Caribbean Margin: Geological interpretation of geophysical data. Ph.D. Thesis, Friedrich-Schiller Universität Jena.
  92. Manga, M.; Brodsky, E. (2006). Seismic triggering of eruptions in the far field: volcanoes and geysers. Annual Review of Earth Planetary Sciences, 34, 263-291. https://doi.org/10.1146/annurev.earth.34.031405.125125
  93. Manga, M.; Brumm, M.; Rudolph, M.L. (2009). Earthquake triggering of mud volcanoes. Marine and Petroleum Geology, 26(9), 1785-1798. https://doi.org/10.1016/j.marpetgeo.2009.01.019
  94. Marín, J.P.; Bermúdez, H.D.; Aguilera, R.; Jaramillo, J.M.; Rodríguez, J.V.; Ruiz, E.C.; Cerón, M.R. (2010). Evaluación geológica y prospectividad sector Sinú – Urabá. Boletín de Geología, 32(1), 145-153.
  95. Martínez, J.M.; Parra, E.; Paris, G.; Forero, C.; Bustamante, M.; Cardona, O.; Jaramillo, J.P. (1994). Los sismos del Atrato Medio 17 y 18 de octubre de 1992, Noroccidente de Colombia. Revista Ingeominas, 4, 35-76.
  96. Mazzini, A.; Svensen, H.; Planke, S.; Guliyev, I.; Akhmanov, G.G.; Fallik, T.; Banks, D. (2009). When mud volcanoes sleep: Insight from seep geochemistry at the Dashgil mud volcano, Azerbaijan. Marine and Petroleum Geology, 26(9), 1704-1715. https://doi.org/10.1016/j.marpetgeo.2008.11.003
  97. Medwedeff, D.A. (1989). Growth fault-bend folding at southeast Lost Hills, San Joaquin Valley, California. AAPG Bulletin, 73(1), 54-67. https://doi.org/10.1306/703C9AE6-1707-11D7-8645000102C1865D
  98. Mellors, R.; Kilb, D.; Aliyev, A.; Gasanov, A.; Yetirmishli, G. (2007). Correlations between earthquakes and large mud volcano eruptions. Journal of Geophysical Research: Solid Earth, 112(B4). https://doi.org/10.1029/2006JB004489
  99. Milkov, A.V. (2000). Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Marine Geology, 167(1-2), 29-42. https://doi.org/10.1016/S0025-3227(00)00022-0
  100. Milkov, A.V. (2005). Global distribution of mud volcanoes and their significance in petroleum exploration as a source of methane in the atmosphere and hydrosphere and as geohazard. In: G. Martinelli, B. Panahi (eds.). Mud Volcanoes, Geodynamics and Seismicity (pp. 29-34). Springer. https://doi.org/10.1007/1-4020-3204-8_3
  101. Mora, C. (2018). Evaluación de rocas generadoras en las cuencas Sinú-San Jacinto y Valle Inferior del Magdalena y su relación con la prospectividad y el modelo de sistemas petrolíferos. Universidad de Caldas, Instituto de Investigaciones en Estratigrafía.
  102. Mora, J.A.; Oncken, O.; Le Breton, E.; Mora, A.; Veloza, G.; Vélez, V.; de Freitas, M. (2018). Controls on forearc basin formation and evolution: insights from Oligocene to Recent tectono-stratigraphy of the Lower Magdalena Valley basin of northwest Colombia. Marine and Petroleum Geology, 97, 288-310. https://doi.org/10.1016/j.marpetgeo.2018.06.032
  103. Mora-Páez, H.; Kellogg, J.; Freymueller, J.; Mencin, D.; Fernandes, R.M.; Diederix, H.; LaFemina, P.; Cardona-Piedrahíta, L.; Lizarazo, S.; Peláez-Gaviria, J.R.; Díaz-Mila, F.; Bohórquez-Orozco, O.P.; Giraldo-Londoño, L.; Corchuelo-Cuervo, Y. (2019). Crustal deformation in the northern Andes – A new GPS velocity field. Journal of South American Earth Sciences, 89, 76-91. https://doi.org/10.1016/j.jsames.2018.11.002
  104. Morales-Giraldo, D.F.; Rocha-Gutiérrez, V.L.; Posada-Posada, B.O. (2017). Geomorfología de los fondos submarinos del Parque Nacional Natural Corales de Profundidad, mar Caribe colombiano. Boletín de Investigaciones Marinas y Costeras, 46(2), 73-90. https://doi.org/10.25268/bimc.invemar.2017.46.2.727
  105. Morley, C.K. (2003). Outcrop examples of mudstone intrusions from the Jerudong anticline Brunei Darussalam and inferences for hydrocarbon reservoirs. Geological Society, London, Special Publications, 216, 381-394. https://doi.org/10.1144/GSL.SP.2003.216.01.25
  106. Mourad, B. (2005). New seismic Neogene clay diapirs and hydrocarbon implications in the North-Eastern African margin of Tunisia. In: G. Martinelli, B. Panahi (eds.). Mud volcanoes, geodynamics and seismicity (pp. 1-15). Chapter 1. Springer-Verlag. https://doi.org/10.1007/1-4020-3204-8_1
  107. Musgrave, A.W.; Hicks, W.G. (1968). Outlining shale masses by geophysical methods. In: J. Braunstein; G.D. O’Brien (eds.). Diapirism and diapirs: a symposium. Vol. 8. AAPG. https://doi.org/10.1306/M8361C8
  108. Nettleton, L.L. (1934). Fluid mechanics of salt domes. AAPG Bulletin, 18(9), 1175-1204. https://doi.org/10.1306/3D932C74-16B1-11D7-8645000102C1865D
  109. Nettleton, L.L.; Elkins, T.A. (1947). Geological materials made from granular materials. EOS, Transactions American Geophysical Union, 28(3), 451-466. https://doi.org/10.1029/TR028i003p00451
  110. Niemann, H.; Lösekann, T.; de Beer, D.; Elvert, M.; Nadalig, T.; Knittel, K.; Amann, R.; Sauter, E.J.; Schlüter, M.; Klages, M.; Foucher, J.P.; Boetius, A. (2006). Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature, 443, 854-858. https://doi.org/10.1038/nature05227
  111. Niemann, H.; Boetius, A. (2010). Mud volcanoes. In: K.N. Timmis (ed.). Handbook of hydrocarbon and lipid microbiology (pp. 205-214). Springer. https://doi.org/10.1007/978-3-540-77587-4_13
  112. Nordgard-Bolas, H.M.; Hermanrud, C.; Teige, G.M.G. (2004). Origin of overpressures in shales: constraints from basin modeling. AAPG Bulletin, 88(2), 193-211. https://doi.org/10.1306/10060302042
  113. Ojeda, G.Y.; Restrepo, I.C.; Correa, I.D.; Ríos, A.A. (2007). Morfología y arquitectura interna de una plataforma continental cambiante: Golfo de Morrosquillo. Boletín de Geología, 29(2), 105-114.
  114. Oppenheim, V. (1957). Petroleum Geology of the Sinu Basin, Colombia. XX International Geological Congress, México.
  115. Pérez, O.J.; Wesnousky, S.G.; De La Rosa, R.; Márquez, J.; Uzcátegui, R.; Quintero, C.; Liberal, L.; Mora-Páez, H.; Szeliga, W. (2018). On the interaction of the North Andes plate with the Caribbean and South American plates in northwestern South America from GPS geodesy and seismic data. Geophysical Journal International, 214(3), 1986-2001. https://doi.org/10.1093/gji/ggy230
  116. Pettijohn, F.J. (1975). Sedimentary rocks. 3rd ed. Harper & Row Publishers.
  117. Pindell, J.; Kennan, L.; Maresch, W.V.; Stanek, K.P.; Draper, G.; Higgs, R. (2005). Plate-kinematics and crustal dynamics of circum-Caribbean arc-continent: Tectonic controls on basin development in Proto-Caribbean margins. In: H.G. Lallemant, V.B. Sisson (eds.). Caribbean-South American plate interactions, Venezuela (pp. 7-52). GSA. https://doi.org/10.1130/0-8137-2394-9.7
  118. Pindell, J.L.; Kennan, L. (2009). Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: an update. Geological Society, London, Special Publications, 328, 1-55. https://doi.org/10.1144/SP328.1
  119. Planke, S.; Svensen, H.; Hovland, M.; Banks, D.; Jamtveit, B. (2003). Mud and fluid migration in active mud volcanoes in Azerbaijan. Geo-Marine Letters, 23(3-4), 258-268. https://doi.org/10.1007/s00367-003-0152-z
  120. Podladchikov, Y.; Talbot, C.; Poliakov, A.N.B. (1993). Numerical models of complex diapirs. Tectonophysics, 228(3-4), 189-198. https://doi.org/10.1016/0040-1951(93)90340-P
  121. Potter, P.E.; Maynard, J.B.; Pryor, W.A. (1980). Sedimentology of shale. Springer-Verlag.
  122. Quintero-Ramírez, J.D. (2012). Interpretación sísmica de volcanes de lodo en la zona occidental del abanico del delta del río Magdalena, Caribe Colombiano. Tesis, Universidad EAFIT, Medellín, Colombia.
  123. Reed, D.L.; Silver, E.A.; Tagudin, J.E.; Shipley, T.H.; Vrolijk, P. (1990). Relations between mud volcanoes, thrust deformation, slope sedimentation, and gas hydrate, offshore north Panama. Marine and Petroleum Geology, 7(1), 44-54. https://doi.org/10.1016/0264-8172(90)90055-L
  124. Restrepo, I.C.; Ojeda, G.Y.; Correa, I.D. (2007). Geomorfología de la plataforma somera del departamento de Córdoba, costa caribe colombiana. Boletín de Ciencias de la Tierra, 20, 39-52.
  125. Rodríguez, I.; Bulnes, M.; Poblet, J.; Masini, M.; Flinch, J. (2021). Structural style and evolution of the offshore portion of the Sinu Fold Belt (South Caribbean Deformed Belt) and adjacent part of the Colombian Basin. Marine and Petroleum Geology, 125. https://doi.org/10.1016/j.marpetgeo.2020.104862
  126. Rossello, E.A.; Rey, A.; Ramírez, V. (2011). Segmentación tectonosedimentaria del margen pasivo caribeño colombiano. XVIII Congreso Geológico Argentino, Neuquén, Argentina.
  127. Rossello, E.A.; Cossey, S.P.J. (2012). What is the evidence for subduction in the Caribbean margin of Colombia? XI Simposio Bolivariano de cuencas Subandinas, Cartagena, Colombia.
  128. Rossello, E.A.; Osorio, J.A. (2016). Influencia del cinturón del Sinú-San Jacinto en la distribución 4D del diapirismo argilocinético del Margen Caribeño Colombiano. XII Simposio Bolivariano de Cuencas Subandinas, Bogotá, Colombia.
  129. Rossello, E.A. (2018). Influencia del soterramiento en la calidad de los reservorios de hidrocarburos: fundamentos, metodologías prácticas de reconocimiento e interpretación. Revista de la Asociación Geológica Argentina, 75(2), 722-735.
  130. Sawolo, N.; Sutriono, E.; Istadi, B.P.; Darmoyo, A.B. (2009). The LUSI mud volcano triggering controversy: was it caused by drilling? Marine and Petroleum Geology, 26, 1766-1784. https://doi.org/10.1016/j.marpetgeo.2009.04.002
  131. Sawolo, N.; Sutriono, E.; Istadi, B.P.; Darmoyo, A.B. (2010). Was LUSI caused by drilling? – Authors reply to discussion. Marine and Petroleum Geology, 27, 1658-1675. https://doi.org/10.1016/j.marpetgeo.2010.01.018
  132. Schamel, S.; Allen, R.B.; Schelling, D.; Wavrek, D.; Laverde, F.; Ballesteros, C.I. (1998). Hydrocarbon potential of the Sinú-San Jacinto region of Northern Colombia. Annual Convention Abstract, Salt Lake City, USA.
  133. Schultz-Ela, D.D.; Jackson, M.P.A.; Vendeville, B.C. (1993). Mechanics of active salt diapirism. Tectonophysics, 228(3-4), 275-312. https://doi.org/10.1016/0040-1951(93)90345-K
  134. Shepard, F.P.; Dill, R.F.; Heezen, B.C. (1968). Diapiric intrusions in foreset slope sediments off Magdalena Delta, Colombia. AAPG Bulletin, 52(11), 2197-2207. https://doi.org/10.1306/5D25C55F-16C1-11D7-8645000102C1865D
  135. Shipley, T.; Houston, M.; Buffer, R.; Shaub, J.; McMillen, K.J.; Ladd, J.W.; Worzel, J.L. (1979). Seismic reflection evidence for the widespread occurrence of possible gas hydrate horizons on continental slopes and rises. AAPG Bulletin, 63(12), 2204-2213.
  136. Somoza, L.; León, R.; Ivanov, M.; Fernández-Puga, M.; Gardner, J.; Hernández-Molina, J.; Pinheiro, L.; Rodero, J.; Lobato, A.; Maestro, A.; Vázquez, J.T.; Medialdea, T.; Fernández-Salas, L.M. (2003). Seabed morphology and hydrocarbon seepage in the Gulf of Cadiz mud volcano area: Acoustic imagery, multibean and ultra-high-resolution seismic data. Marine Geology, 195(1-4), 153-176. https://doi.org/10.1016/S0025-3227(02)00686-2
  137. Stainforth, R.M. (1969). The concept of sea-floor spreading applied to Venezuela. Asociación Venezolana de Geología, Minería y Petróleo, Boletín Informático, 12, 257-274.
  138. Stern, R.J. (1998). A subduction primer for instructors of introductory geology courses and authors of introductory geology textbooks. Journal of Geoscience Education, 46(3), 221-228. https://doi.org/10.5408/1089-9995-46.3.221
  139. Stern, R.J. (2002). Subduction zones. Reviews of Geophysics, 40(4). https://doi.org/10.1029/2001RG000108
  140. Stewart, S.A.; Davies, R.J. (2006). Structure and emplacement of mud volcano systems in the South Caspian Basin. AAPG Bulletin, 90(5), 771-786. https://doi.org/10.1306/11220505045
  141. Summer, R.H.; Westbrook, G.K. (2001). Mud diapirism in front of the Barbados accretionary wedge: the influence of fracture zones and North America-South America plate motions. Marine and Petroleum Geology, 18(5), 591-613. https://doi.org/10.1016/S0264-8172(01)00010-1
  142. Taboada, A.; Rivera, L.A.; Fuenzalida, A.; Cisternas, A.; Philip, H.; Bijwaard, H.; Rivera, C. (2000). Geodynamics of the northern Andes: subductions and intracontinental deformation (Colombia). Tectonics, 19(5), 787-813. https://doi.org/10.1029/2000TC900004
  143. Talbot, C.J.; Rönnlund, P.; Schmeling, H.; Koyi, H.; Jackson, M.P.A. (1991). Diapiric spoke patterns. Tectonophysics, 188(1-2), 187-201. https://doi.org/10.1016/0040-1951(91)90322-J
  144. Talbot, C.J. (1992). Centrifuged models of Gulf of Mexico profile. Marine and Petroleum Geology, 9(4), 412-432. https://doi.org/10.1016/0264-8172(92)90052-G
  145. Talbot, C.J. (1995). Molding of salt diapirs by stiff overburden. In: M.P.A. Jackson, D.G. Roberts, S. Snelson (eds.). Salt tectonics: a global perspective (pp. 61-75). Vol. 65. AAPG. https://doi.org/10.1306/M65604C4
  146. Taylor, M.H.; Dillon, W.P.; Pecher, I.A. (2000). Trapping and migration of methane associated with the gas hydrate stability zone at the Blake Ridge Diapir: New insights from seismic data. Marine Geology, 164(1-2), 79-89. https://doi.org/10.1016/S0025-3227(99)00128-0
  147. Tingay, M.; Heidbach, O.; Davies, R.; Swarbrick, R. (2008). Triggering of the Lusi mud eruption: Earthquake versus drilling initiation. Geology, 36(8), 639-642. https://doi.org/10.1130/G24697A.1
  148. Tingay, M.; Manga, M.; Rudolph, M.L.; Davies, R. (2018). An alternative review of facts, coincidences and past and future studies of the Lusi eruption. Marine and Petroleum Geology, 95, 345-361 https://doi.org/20.1016/j.parpetgeo.2017.12.031
  149. Tinivella, U.; Giustiniani, M. (2013). An overview of mud volcanoes associated to gas hydrate system. Updates in Volcanology - New Advances in understanding volcanic systems, 225-267. https://doi.org/10.5772/51270
  150. Toto, E.A.; Kellogg, J.N. (1992). Structure of the Sinu-San Jacinto fold belt – an active accretionary prism in northern Colombia. Journal of South American Earth Sciences, 5(2), 221-222. https://doi.org/10.1016/0895-9811(92)90039-2
  151. Toussaint, J.F.; Restrepo, J.J. (2020). Tectonostratigraphic terranes in Colombia: An update. Second part: Oceanic terranes. In: J. Gómez, A.O. Pinilla-Pachon (eds.). The Geology of Colombia (pp. 239-277). Vol. 2. Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.36.2019.07
  152. Uyeda, S. (1982). Subduction zones: An introduction to comparative subductology. Tectonophysics, 81(3-4), 133-159. https://doi.org/10.1016/0040-1951(82)90126-3
  153. Van Rensbergen, P.; Morley, C.K.; Ang, D.W.; Hoan, T.Q.; Lam, N.T. (1999). Structural evolution of shale diapirs from reactive rise to mud volcanism: 3D seismic data from the Baram delta, offshore Brunei Darussalam. Journal of the Geological Society, 156(3), 633-650 https://doi.org/10.1144/gsjgs.156.3.0633
  154. Velázquez, A. (2005). Los terremotos del Atrato Medio-Murindó en octubre de 1992. En: M. Hermelin (ed.). Desastres de origen natural en Colombia 1979-2004 (pp. 91-108). Fondo Editorial EAFIT. Vendeville, B.C.; Jackson, M.P.A. (1992a). The rise of diapirs during thin-skinned extension. Marine and Petroleum Geology, 9(4), 331-353. https://doi.org/10.1016/0264-8172(92)90047-I
  155. Vendeville, B.C.; Jackson, M.P.A. (1992b). The fall of diapirs during thin-skinned extension. Marine and Petroleum Geology, 9(4), 354-371. https://doi.org/10.1016/0264-8172(92)90048-J
  156. Vernette, G. (1989). Examples of diapiric control on shelf topography and sedimentation patterns on the Colombian Caribbean continental shelf. Journal of South American Earth Sciences, 2(4), 391-400. https://doi.org/10.1016/0895-9811(89)90017-5
  157. Vernette, G.; Mauffret, A.; Bobier, C.; Briceno, L.; Gayet, J. (1992). Mud diapirism, fan sedimentation and strike-slip faulting, Caribbean Colombian Margin. Tectonophysics, 202(2-4), 335-349. https://doi.org/10.1016/0040-1951(92)90118-P
  158. Vinnels, J.S.; Butler, R.W.H.; McCaffrey, W.D.; Paton, D.A. (2010). Depositional processes across the Sinú accretionary prism, offshore Colombia. Marine and Petroleum Geology, 27(4), 794-809. https://doi.org/10.1016/j.marpetgeo.2009.12.008
  159. Wagner-Friedrichs, M.; Krastel, S.; Spiess, V.; Ivanov, M.; Bohrmann, G.; Meisner, L. (2008). Three-dimensional seismic investigations of the Sevastopol mud volcano in correlation to gas/fluid migration pathways and indications for gas hydrate occurrences in the Sorokin Trough (Black Sea). Geochemistry, Geophysics, Geosystems, 9(5). https://doi.org/10.1029/2007GC001685
  160. Wiedicke, M.; Neben, S.; Spiess, V. (2001). Mud volcanoes at the front of the Makran accretionary complex, Pakistan. Marine Geology, 172(1-2), 57-73. https://doi.org/10.1016/S0025-3227(00)00127-4
  161. Weijermars, R.; Jackson, M.P.A.; Vendeville, B. (1993). Rheological and tectonic modelling of salt provinces. Tectonophysics, 217(1-2), 143-174. https://doi.org/10.1016/0040-1951(93)90208-2
  162. Wu, T. (2005). Activity, mud migration, and formation mechanisms of Helgoland and Dvurechenskii mud volcanoes, Black Sea. PhD. Thesis, University Bremen.
  163. Yassir, N.A. (1989). Mud volcanoes and the behavior of overpressured clays and silts. PhD. Thesis, University College London.
  164. Zapata-García, G.; Rodríguez-García, G. (2020). New contributions to knowledge about the Chocó-Panama Arc in Colombia, including a new segment south of Colombia. In: J. Gómez, D. Mateus-Zabala (eds.). The Geology of Colombia (pp. 417-450). Vol. 3. Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.37.2019.14