Vol. 45 Núm. 1 (2023): Boletín de Geología
Artículos científicos

Análisis mineralógicos, petrográficos y geoquímicos confirman el origen hidrotermal de sedimentos metalíferos sobreyaciendo las peridotitas de Cerro Matoso, Colombia

Andrés Castrillón
Universidad Nacional de Colombia
Franck Lartaud
Sorbonne Université
Antonio Delgado-Huertas
Universidad de Granada
Fernando Núñez-Useche
Universidad Nacional Autónoma de México

Publicado 2023-02-28

Palabras clave

  • Isótopos de oxígeno y carbono,
  • Metano,
  • REE,
  • Sistemas de ventilas hidrotermales,
  • Lateritas de níquel

Cómo citar

Castrillón, A., Lartaud, F., Delgado-Huertas, A., & Núñez-Useche, F. (2023). Análisis mineralógicos, petrográficos y geoquímicos confirman el origen hidrotermal de sedimentos metalíferos sobreyaciendo las peridotitas de Cerro Matoso, Colombia. Boletín De Geología, 45(1), 53–86. https://doi.org/10.18273/revbol.v45n1-2023003

Altmetrics

Resumen

El yacimiento Cerro Matoso, una de las minas de ferroníquel a cielo abierto más grandes del mundo, está formado por una sucesión sedimentaria que reposa sobre un cuerpo ultramáfico adosado al continente, que forma parte del Complejo Ofiolítico del Cauca. El conjunto de rocas fue adosado en el noroeste de Colombia durante el Cretácico, y fue expuesto a procesos de meteorización durante la última orogenia andina. Las muestras de sedimentos fueron recolectadas y estudiadas mediante microscopía petrográfica, SEM, EPMA, ICP-MS, FRX y análisis de isótopos de oxígeno y carbono. Los resultados de los isótopos de oxígeno reflejan temperaturas del agua intersticial que alcanzan los 130°C durante la precipitación mineral, lo que es coherente con fluidos derivados de la serpentinización de las rocas ultramáficas que pueden estar relacionados con actividad hidrotermal en el fondo del mar. Los valores negativos de δ13C (−27,1 a −1‰ V-PDB) en muestras (roca total) de la sucesión sedimentaria, se correlacionan con el rango de δ13C del metano de fluidos modernos derivados de serpentinita. Los datos REE/Fe (relación <0.4) sugieren que los sedimentos denominados lodolitas negras y arcillolitas verdes fosilíferas corresponden a sedimentos metalíferos e hidrotermales respectivamente, formados en la antigua dorsal meso-oceánica del océano Pacífico, muy al oeste de su posición actual. Las anomalías positivas de Eu y negativas de Ce registradas en la sucesión de lodolitas negras se correlacionan con un escenario de plumas hidrotermales.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Abrajano, T.A.; Sturchio, N.C.; Bohlke, J.K.; Lyon, G.L.; Poreda, R.J.; Stevens, C.M. (1988). Methane-hydrogen gas seeps, Zambales ophiolite, Philippines: Deep or shallow origin? Chemical Geology, 71(1-3), 211-222. https://doi.org/10.1016/0009-2541(88)90116-7
  2. Agrinier, P.; Hékinian, R.; Bideau, D.; Javoy, M. (1995). O and H stable isotope compositions of oceanic crust and upper mantle rocks exposed in the Hess Deep near the Galapagos Triple Junction. Earth and Planetary Science Letters, 136(3-4), 183-196. https://doi.org/10.1016/0012-821X(95)00159-A
  3. Al-Aasm, I.S.; Taylor, B.E.; South, B. (1990). Stable isotope analysis of multiple carbonate samples using selective acid extraction. Chemical Geology: Isotope Geoscience Section, 80(2), 119-125. https://doi.org/10.1016/0168-9622(90)90020-D
  4. Alt, J.; Muehlenbachs, K.; Honnorez, J. (1986). An oxygen isotopic profile through the upper kilometer of the oceanic crust, DSDP Hole 504B. Earth and Planetary Science Letters, 80(3-4), 217-229. https://doi.org/10.1016/0012-821X(86)90106-8
  5. Alt, J.C.; Shanks III, W.C. (1998). Sulfur in serpentinized oceanic peridotites: Serpentinization processes and microbial sulfate reduction. Journal of Geophysical Research: Solid Earth, 103(B5), 9917-9929. https://doi.org/10.1029/98JB00576
  6. Alt, J.C.; Teagle, D.A.H. (2003). Hydrothermal alteration of upper oceanic crust formed at a fast-spreading ridge: mineral, chemical, and isotopic evidence from ODP Site 801. Chemical Geology, 201(3-4), 191-211. https://doi.org/10.1016/S0009-2541(03)00201-8
  7. Alt, J.C.; Shanks III, W.C.; Bach, W.; Paulick, H.; Garrido, C.J.; Beaudoin, G. (2007). Hydrothermal alteration and microbial sulfate reduction in peridotite and gabbro exposed by detachment faulting at the Mid-Atlantic Ridge, 15o20´N (ODP Leg 209): A sulfur and oxygen isotope study. Geochemistry, Geophisys, Geosystems, 8(8). https://doi.org/10.1029/2007GC001617
  8. Azami, K.; Hirano, N.; Machida, S.; Yasukawa, K.; Kato, Y. (2018). Rare earth elements and yttrium (REY) variability with water depth in hydrogenetic ferromanganese crust. Chemical Geology, 493, 224-233. https://doi.org/10.1016/j.chemgeo.2018.05.045
  9. Barrero, D. (1974). Metamorfismo regional en el Occidente Colombiano. Simposio sobre ofiolitas Medellín, Colombia, Medellín.
  10. Barrett, T.J.; Jarvis, I. (1988). Rare-earth element geochemistry of metalliferous sediments from DSDP Leg 92: The East Pacific Rise transect. Chemical Geology, 67(3-4), 243-259. https://doi.org/10.1016/0009-2541(88)90131-3
  11. Bau, M.; Dulski, P. (1999). Comparing yttrium and rare earths in hydrothermal fluids from the Mid- Atlantic Ridge: implications for Y and REE behavior during near-vent mixing and for the Y/Ho ratio of Proteozoic seawater. Chemical Geology, 155(1-2), 77-90. https://doi.org/10.1016/S0009-2541(98)00142-9
  12. Bau, M.; Schmidt, K.; Koschinsky, A.; Hein, J.; Kuhn, T.; Usui, A. (2014). Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium. Chemical Geology, 381, 1-9. https://doi.org/10.1016/j.chemgeo.2014.05.004
  13. Bender, M.L.; Broecker, W.; Gornitz, V.; Middel, U.; Kay, R.; Sun, S.S.; Biscaye, P. (1971). Geochemistry of three cores from the East Pacific Rise. Earth and Planetary Science Letters, 12(4), 425-433. https://doi.org/10.1016/0012-821X(71)90028-8
  14. Beukes, N.; Klein, C. (1990). Geochemistry and sedimentology of a facies transition - from microbanded to granular iron formartion - in the early Proterozoic Transvaal Supergroup, South Africa. Precambrian Research, 47(1-2), 99-139. https://doi.org/10.1016/0301-9268(90)90033-M
  15. Bonatti, E. (1981). Metal deposits in the oceanic lithosphere. In: C. Emiliani (ed.). The Sea (pp. 639-686). vol. 7. John Willey and Sons.
  16. Boström, K.; Peterson, M. (1969). The origin of aluminium-poor ferromanganoan sediments in areas of high heat flow on the East Pacific Rise. Marine Geology, 7(5), 427-447. https://doi.org/10.1016/0025-3227(69)90016-4
  17. Byrne, R.H.; Sholkovitz, E.R. (1996). Marine chemistry and geochemistry of the lanthanides. Handbook on the Physics and Chemistry of Rare Earths, 23, 497-593, https://doi.org/10.1016/S0168-1273(96)23009-0
  18. Byrne, R.H.; Liu, X.; Schijf, J. (1996). The influence of phosphate coprecipitation on rare earth distributions in natural waters. Geochimica et Cosmochimica Acta, 60(17), 3341-3346, https://doi.org/10.1016/0016-7037(96)00197-4
  19. Campbell, A.C.; Palmer, M.R.; Klinkhammer, G.P.; Bowers, T.S.; Edmond, J.M.; Lawrence, J.R.; Casey, J.F.; Thompson, G.; Humphris, S.; Rona, P.; Karson, J.A. (1988). Chemistry of hot springs on the Mid-Atlantic Ridge. Nature, 335(6190), 514-519. https://doi.org/10.1038/335514a0
  20. Campbell, A.R.; Larson, P.B. (1998). Introduction to stable isotope applications in hydrothermal systems. In: J.P. Richards, P.B. Larson (eds.). Techniques in Hydrothermal Ore Deposits Geology. Society of Economic Geologists. https://doi.org/10.5382/Rev.10.08
  21. Carothers, W.W.; Adami, L.H.; Rosenbauer, R.J. (1988). Experimental oxygen isotope fractionation between siderite-water and phosphoric acid liberated CO2-siderite. Geochimica et Cosmochimica Acta, 52(10), 2445-2450. https://doi.org/10.1016/0016-7037(88)90302-X
  22. Castrillón, A. (2019). Carbonatos y otros minerales autigénicos asociados a las lateritas niquelíferas de Cerro Matoso y su posible relación con actividad hidrotermal y reducción de sulfatos. Ph.D. Thesis, Universidad Nacional de Colombia, Bogotá, Colombia.
  23. Castrillón, A.; Guerrero, J. (2020). Listvenites: new insights of a hydrothermal system fossilized in Cerro Matoso peridotites, Montelíbano, Córdoba Department, Colombia. Boletín Geológico, 47, 67-84. https://doi.org/10.32685/0120-1425/boletingeo.47.2020.492
  24. Castrillón, A.; Pi-Puig, T.; Guerrero, J.; Nuñez-Useche, F.; Rodriguez, A.; Canet, C. (2022). Clay mineralogy and texture of deep-sea hydrothermal mudstone associated with the Cerro Matoso peridotite in accreted oceanic crust from Colombia. Journal of South American Earth Sciences, 117, 103886. https://doi.org/10.1016/j.jsames.2022.103886
  25. Charlou, J.; Fouquet, Y.; Bougault, H.; Donval, J.; Etoubleau, J.; Jean-Baptiste, P.; Dapoigny, A.; Appriou, P.; Rona, P. (1998). Intense CH4 plumes generated by serpentinization of ultramafic rocks at the intersection of the 15º20´N fracture zone and the Mid-Atlantic Ridge. Geochimica et Cosmochimica Acta, 62(13), 2323-2333. https://doi.org/10.1016/S0016-7037(98)00138-0
  26. Charlou, J.L.; Donval, J.P.; Fouquet, Y.; Jean-Baptiste, P.; Holm, N. (2002). Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′N, MAR). Chemical Geology, 191(4), 345-359. https://doi.org/10.1016/S0009-2541(02)00134-1
  27. Chavagnac, V.; German, C.; Milton, J.; Palmer, M. (2005). Sources of REE in sediment cores from the Rainbow vent site (36º14´N, MAR). Chemical Geology, 216(3-4), 329-352. https://doi.org/10.1016/j.chemgeo.2004.11.015
  28. Coplen, T.B.; Kendall, C.; Hopple, J. (1983). Comparison of stable isotope reference samples. Nature, 302(5905), 236-238. https://doi.org/10.1038/302236a0
  29. Dekov, V.M.; Cuadros, J.; Kamenov, G.D.; Weiss, D.; Arnold, T.; Basak, C.; Rochette, P. (2010). Metalliferous sediments from the HMS Challenger voyage (1872–1876). Geochimica et Cosmochimica Acta, 74(17), 5019-5038. https://doi.org/10.1016/j.gca.2010.06.001
  30. Dias, Á.; Barriga, F. (2006). Mineralogy and geochemistry of hydrothermal sediments from the serpentinite-hosted Saldanha hydrothermal field (36º34´N; 33º26´W) at MAR. Marine Geology, 225(1-4), 157-175. https://doi.org/10.1016/j.margeo.2005.07.013
  31. Dias, Á.; Früh-Green, G.; Bernasconi, S.; Barriga, F. (2011). Geochemistry and stable isotope constrains on high-temperature activity from sediment cores of the Saldanha hydrothermal field. Marine Geology, 279(1-4), 128-140. https://doi.org/10.1016/j.margeo.2010.10.017
  32. Douville, E.; Bienvenu, P.; Charlou, J.; Donval, J.; Fouquet, Y.; Appriou, P.; Gamo, T. (1999). Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochimica et Cosmochimica Acta, 63(5), 627-643. https://doi.org/10.1016/S0016-7037(99)00024-1
  33. Douville, E.; Charlou, J.L.; Oelkers, E.H.; Bienvenu, P.; Colon, C.F.J.; Donval, J.P.; Prieur, D.; Appriou, P. (2002). The rainbow vent fluids (36o14′N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids. Chemical Geology, 184(1-2), 37-48. https://doi.org/10.1016/S0009-2541(01)00351-5
  34. Dubinin, A. (2004). Geochemistry of rare earth elements in the ocean. Lithology and Mineral Resources, 39(4), 289-307. https://doi.org/10.1023/B:LIMI.0000033816.14825.a2
  35. Dueñas, H.; Duque-Caro, H. (1981). Geología del Cuadrángulo F - 8 Planeta Rica. Boletín Geológico, 24(1), 1-35. https://doi.org/10.32685/0120-1425/bolgeol24.1.1981.264
  36. Edmonds, H.N.; German, C.R. (2004). Particle geochemistry in the Rainbow hydrothermal plume, Mid-Atlantic Ridge. Geochimica et Cosmochimica Acta, 68(4), 759-772. https://doi.org/10.1016/S0016-7037(03)00498-8
  37. Eickmann, B.; Little, C.T.S; Peckmann, J.; Taylor, P.D.; Boyce, A.J.; Morgan, D.J.; Bach, W. (2021). Shallow-marine serpentinization-derived fluid seepage in the Upper Cretaceous Qahlah Formation, United Arab Emirates. Geological Magazine, 158(9), 1561-1571. https://doi.org/10.1017/S0016756821000121
  38. Elderfield, H. (1988). The oceanic chemistry of the rare-earth elements. Philosophical Transactios of the Royal Society of London. Series A, Mathematical and Physical Sciences, 325(1583), 105-126. https://doi.org/10.1098/rsta.1988.0046
  39. Escartín, J.; Mével, C.; MacLeod, C.J.; McCaig, A.M. (2003). Constraints on deformation conditions and the origin of oceanic detachments: The Mid-Atlantic Ridge core complex at 15o45´N. Geochemistry, Geophysics, Geosystems, 4(8). https://doi.org/10.1029/2002GC000472
  40. Früh-Green, G.L.; Plas, A.; Lécuyer, C. (1996). Petrologic and stable isotope constraints on hydrothermal alteration and serpentinization of the EPR shallow mantle at Hess Deep (Site 895). Proceedings of the Ocean Drilling Program Scientific Results, 147, 109-163. https://doi.org/10.2973/odp.proc.sr.147.016.1996
  41. Früh-Green, G.L.; Connoly, J.A.; Plas, A.; Kelley, D.; Grobéty, B. (2004). Serpentinization of oceanic peridotites: Implication for geochemical cycles and biological activity. In: W.S.D. Wilocock, E.F. Delong, D.S. Kelley, J.A. Baross, S.C. Cary (eds.). The Subseafloor Biosphere at Mid-Ocean Ridges (pp. 119-136). Vol. 144. Wiley. https://doi.org/10.1029/144GM08
  42. Fu, Q.; Socki, R.A.; Niles, P.B. (2015). Evaluating reaction pathways of hydrothermal abiotic organic synthesis at elevated temperatures and pressures using carbon isotopes. Geochimica et Cosmochimica Acta, 154, 1-17. https://doi.org/10.1016/j.gca.2015.01.027
  43. Gaudin, A.; Decarreau, A.; Noack, Y.; Grauby, O. (2005). Clay mineralogy of the nickel laterite ore developed from serpentinised peridotites at Murrin Murrin, Western Australia. Australian Journal of Earth Sciences, 52(2), 231-241. https://doi.org/10.1080/08120090500139406
  44. German, C.R.; Higgs, N.C.; Thomson, J.; Mills, R.; Elderfield, H.; Blusztajn, J.; Fleer, A.P.; Bacon, M.P. (1993). A geochemical study of metalliferous sediment from the TAG hydrothermal Mound, 26o08´N, Mid-Atlantic Ridge. Journal of Geophysical Research: Solid Earth, 98(B6), 9683-9692. https://doi.org/10.1029/92JB01705
  45. German, C.R.; Rudnicki, M.D.; Klinkhammer, G.P. (1999). A segment-scale survey of the Broken Spur hydrothermal plume. Deep Sea Research Part I: Oceanographic Research Papers, 46(4), 701-714. https://doi.org/10.1016/S0967-0637(98)00078-8
  46. German, C.R.; Von Damm, K.L. (2003). Hydrothermal processes. In: H. Elderfield (ed.). The oceans and marine geochemistry: Treatise on Geochemistry (pp. 181-222). Volume 6, Elsevier Ltd.
  47. Gleeson, S.; Herrington, R.; Durango, J.; Velázquez, C.A.; Koll, G. (2004). The Mineralogy and Geochemistry of the Cerro Matoso S.A. Ni Laterite Deposit, Montelíbano, Colombia. Economic Geology, 99(6), 1197-1213. https://doi.org/10.2113/gsecongeo.99.6.1197
  48. Grenne, T.; Slack, J.F. (2003). Paleozoic and Mesozoic silica-rich seawater: evidence from hematitic chert (jasper) deposits. Geology, 31(4), 319-322. https://doi.org/10.1130/0091-7613(2003)031<0319:PAMSRS>2.0.CO;2
  49. Grenne, T.; Slack, J.F. (2005). Geochemistry of jasper beds from the Ordovician Løkken ophiolite, Norway: origin of proximal and distal siliceous exhalites. Economic Geology, 100(8), 1511-1527. https://doi.org/10.2113/gsecongeo.100.8.1511
  50. Heath, G.R.; Dymond, J. (1981). Metalliferous-sediment deposition in time and space: East Pacific Rise and Bauer Basin, northern Nazca plate. In: L.V.D. Kulm.; J. Dymond; E.J. Dasch; D.M. Hussong; R. Roderick. (eds). Nazca Plate: Crustal Formation and Andean Convergence (pp.175-198). The Geological Society of America. https://doi.org/10.1130/MEM154-p175
  51. Hein, J.R.; Koschinsky, A.; Halbach, P.; Manheim, F.T.; Bau, M.; Kang, J.K.; Lubick, N. (1997). Iron and manganese oxide mineralization in the Pacific. Geological Society, London, Special Publications, 119, 123-138. https://doi.org/10.1144/GSL.SP.1997.119.01.09
  52. Hein, J.R.; Conrad, T.A.; Frank, M.; Christl, M.; Sager, W.W. (2012). Copper‐nickel‐rich, amalgamated ferromanganese crust‐nodule deposits from Shatsky Rise, NW Pacific. Geochemistry, Geophysics, Geosystems, 13(10). https://doi.org/10.1029/2012GC004286
  53. Hinkley, T.K.; Tatsumoto, M. (1987). Metals and isotopes in Juan de Fuca Ridge hydrothermal fluids and their associated solid materials. Journal of Geophysic Research: Solid Earth, 92(B11), 11400-11410. https://doi.org/10.1029/JB092iB11p11400
  54. Hoefs, J.; Sywall, M. (1997). Lithium isotope composition of quaternary and Tertiary biogene carbonates and a global lithium isotope balance. Geochimica et Cosmochimica Acta, 61(13), 2679-2690. https://doi.org/10.1016/S0016-7037(97)00101-4
  55. Hodel, F.; Macouin, M.; Trindade, R.I.F.; Triantafyllou, A.; Ganne, J.; Chavagnac, V., Berger, J.; Rospabé, M.; Destrigneville, C.; Carlut, J.; Ennih, N.; Agrinier, P. (2018). Fossil black smoker yields oxygen isotopic composition of Neoproterozoic seawater. Nature Communications, 9(1), 1453. https://doi.org/10.1038/s41467-018-03890-w
  56. Hongo, Y.; Obata, H.; Gamo, T.; Nakaseama, M.; Ishibashi, J.; Konno, U.; Saegusa, S.; Ohkubo, S.; Tsunogai, U. (2007). Rare Earth Elements in the hydrothermal system at Okinawa Trough back-arc basin. Geochemical Journal, 41(1), 1-15. https://doi.org/10.2343/geochemj.41.1
  57. Hoyos, N.; Velázquez, C.A. (1996). Análisis del Origen de la Lateritización y Saprolitización del Yacimiento Niquelífero de Cerro Matoso. Tesis de Maestría, Universidad EAFIT, Medellín, Colombia.
  58. Irwin, H.; Curtis, C.; Coleman, M. (1977). Isotopic evidence for source of diagenetic carbonates formed durign burial of organic-rich sediments. Nature, 269(5625), 209-213. https://doi.org/10.1038/269209a0
  59. James, R.; Elderfield, H.; Palmer, M. (1995). The chemistry of hydrothermal fluids from the Broken Spur Site, 29ºN Mid-Atlantic Ridge. Geochimica et Cosmochimica Acta, 59(4), 651-659. https://doi.org/10.1016/0016-7037(95)00003-I
  60. Johnson, C.; Beard, B.; Beukes, N.; Klein, C.; O`Leary, J. (2003). Ancient geochemical cycling in the Earth as inferred from Fe isotope studies of banded iron formations from the Transvaal Craton. Contribution to Mineralogy and Petrology, 144(5), 523-547. https://doi.org/10.1007/s00410-002-0418-x
  61. Kelley, D.S.; Karson, J.A; Blackman, D.K.; Früh-Green, G.L.; Butterfield, D.A.; Lilley, M.D.; Olson, E.J.; Schrenk, M.O.; Roe, K.K.; Lebon, G.T.; Rivizzigno, P. (2001). An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30oN. Nature, 412(6843), 145-149. https://doi.org/10.1038/35084000
  62. Kelley, D.S.; Karson, J.A.; Früh-Green, G.L.; Yoerger, D.R.; Shank, T.M.; Butterfield, D.A.; Hayes, J.M.; Schrenk, M.O.; Olson, E.J.; Proskurowski, G.; Jakuba, M.; Bradley, A.; Larson, B.; Ludwig, K.; Glickson, D.; Buckman, K.; Bradley, A.S.; Brazelton, W.J.; Roe, K.; Elend, M.J.; Delacour, A.; Bernasconi, S.M.; Lilley, M.D.; Baross, J.A.; Summons, R.E.; Sylva, S.P. (2005). A serpentinite-hosted ecosystem: The Lost City Hydrothermal Field. Science, 307(5714), 1428-1434. https://doi.org/10.1126/science.1102556
  63. Klein, F.; Humphris, S.E.; Guo, W.; Schubotz, F.; Schwarzenbach, E.M.; Orsi, W.D. (2015). Fluid mixing and the deep biosphere of a fossil Lost City-type hydrothermal system at the Iberia Margin. Proceedings of the National Academy of Sciences of the United States of America, 112(39), 12036-12041. https://doi.org/10.1073/pnas.1504674112
  64. Klinkhammer, G.; Elderfield, H.; Hudson, A. (1983). Rare earth elements in seawater near hydrothermal vents. Nature, 305(5931), 185-188. https://doi.org/10.1038/305185a0
  65. Klinkhammer, G.; Elderfield, H.; Edmond, J.; Mitra, A. (1994). Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges. Geochimica et Cosmochimica Acta, 58(23), 5105-5113. https://doi.org/10.1016/0016-7037(94)90297-6
  66. Kuhn, T.; Bau, M.; Blum, N.; Halbach, P. (1998). Origin of negative Ce anomalies in mixed hydrothermal–hydrogenetic Fe–Mn crusts from the Central Indian Ridge. Earth and Planetary Science Letters, 163(1-4), 207-220. https://doi.org/10.1016/S0012-821X(98)00188-5
  67. Lartaud, F.; de Rafelis, M.; Oliver, G.; Krylova, E.; Dyment, J.; Ildefonse, B.; Thibaud, R.; Gente, P.; Hoisé, E.; Meistertzheim, AL.; Fouquet, Y.; Gaill, F.; Le Bris, N. (2010). Fossil clams from a serpentinite-hosted sedimented vent field near the active smoker complex Rainbow, MAR, 36o13’N: Insight into the biogeography of vent fauna. Geochemistry, Geophysics, Geosystems, 11(8). https://doi.org/10.1029/2010GC003079
  68. Lartaud, F.; Little, C.T.S.; de Rafelis, M.; Bayon, G.; Dyment, J.; Ildefonse, B.; Gressier, V.; Fouquet, Y.; Gaill, F.; Le Bris, N. (2011). Fossil evidence for serpentinization fluids fueling chemosynthetic assemblages. Proceedings of the National Academy of Sciences of the United States of America, 108(19), 7698-7703. https://doi.org/10.1073/pnas.1009383108
  69. Lavoie, D.; Chi, G. (2010). An Ordovician “Lost City”—venting serpentinite and life oases on Iapetus seafloor. Canadian Journal of Earth Sciences, 47(3), 199-207. https://doi.org/10.1139/E10-013
  70. Lewis, J.F.; Draper, G.; Proenza, J.A.; Espaillat, J.; Jiménez, J. (2006). Ophiolite-related ultramafic rocks (Serpentinites) in the Caribbean region: A Review of their occurrence, composition, origin, emplacement and Ni-laterite soil formation. Geologica Acta, 4(1-2), 237-263. https://doi.org/10.1344/105.000000368
  71. Li, X.; Jenkyns, H.C.; Wang, C.; Hu, X.; Chen, X.; Wei, Y.; Huang, Y.; Cui, J. (2006). Upper Cretaceous carbon- and oxygen-isotope stratigraphy of hemipelagic carbonate facies from southern Tibet, China. Journal of the Geological Society, 163, 375-382. https://doi.org/10.1144/0016-764905-046
  72. Lilley, M.D.; Butterfield, D.A.; Olson, E.J.; Lupton, J.E.; Macko, S.A.; McDuff, R.E. (1993). Anomalous CH4 and NH4+ concentrations at an unsedimented mid-ocean-ridge hydrothermal system. Nature, 364(6432), 45-47. https://doi.org/10.1038/364045a0
  73. López-Rendón, J. (1986). Geology, mineralogy and geochemistry of the Cerro Matoso nickeliferous laterite, Córdoba, Colombia. MSc. Thesis, Colorado State University, Colorado, USA.
  74. Ludwig, K.L.; Kelley, D.S.; Butterfield, D.A.; Nelson, B.K.; Früh-Green, G. (2006). Formation and evolution of carbonate chimneys at the Lost City Hydrothermal Field. Geochimica et Cosmochimica Acta, 70(14), 3625-3645. https://doi.org/10.1016/j.gca.2006.04.016
  75. Marchig, V.; Gundlach, H.; Möller, P.; Schley, F. (1982). Some geochemical indicators for discriminating between diagenetic and hydrothermal metalliferous sediments. Marine Geology, 50(3), 241-256. https://doi.org/10.1016/0025-3227(82)90141-4
  76. McLennan, S.M. (1989). Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In: B.R. Lipin, G.A. McKay (eds.). Geochemistry and Mineralogy of Rare Earth Elements (pp. 169-200). Vol. 21. https://doi.org/10.1515/9781501509032-010
  77. McMurtry, G.M.; Burnett, W.C. (1975). Hydrothermal metallogenesis in the Bauer Deep of the south-eastern Pacific. Nature, 254(5495), 42-44. https:// doi.org/10.1038/254042a0
  78. McMurtry, G.M.; Yeh, H.W. (1981). Hydrothermal clay mineral formation of East Pacific rise and Bauer Basin sediments. Chemical Geology, 32(1-4), 189-205. https://doi.org/10.1016/0009- 2541(81)90143-1
  79. Mejia, V.M.; Durango, J.R. (1981). Geología de las lateritas niquelíferas de Cerro Matoso S.A. Boletín de Geología, 15(29), 99-116.
  80. Meissnar, R.O.; Flueh, E.R.; Stibane, F.; Berg, E. (1976). Dynamics of the active plate boundary in southwest Colombia according to recent geophysical measurements. Tectonophysics, 35(1-3), 115-136. https://doi.org/10.1016/0040-1951(76)90032-9
  81. Meister, P.; Wiedling, J.; Lott, C.; Bach, W.; Kuhfuß, H.; Wegener, G.; Böttcher, M.E.; Deusner, C.; Lichtschlag, A.; Bernasconi, S.M.; Weber, M. (2018). Anaerobic methane oxidation inducing carbonate precipitation at abiogenic methane seeps in the Tuscan archipelago (Italy). PLoS One, 13(12). https://doi.org/10.1371/journal.pone.0207305
  82. Metz, S.; Trefry, J.H.; Nelsen, T.A. (1988). History and geochemistry of a metalliferous sediment core from the Mid-Atlantic Ridge at 26oN. Geochimica et Cosmochimica Acta, 52(10), 2369-2378. https://doi.org/10.1016/0016-7037(88)90294-3
  83. Mével, C. (2003). Serpentinization of abyssal peridotites at mid-ocean ridges. Comptes Rendus Geoscience, 335(10-11), 825-852. https://doi.org/10.1016/j.crte.2003.08.006
  84. Michard, A.; Albarede, F.; Michard, G.; Minster, J.F.; Charlou, J.L. (1983). Rare-earth elements and uranium in high-temperature solutions from East Pacific Rise hydrolhermal vent field (13 oN). Nature, 303(5920), 795-797. https://doi. org/10.1038/303795a0
  85. Michard, A.; Albarede, F. (1986). The REE content of some hydrothermal fluids. Chemical Geology, 55(1-2), 51-60. https://doi.org/10.1016/0009-2541(86)90127-0
  86. Mills, R.A.; Elderfield, H.; Thomson, J. (1993). A dual origin for the hydrothermal component in a metalliferous sediment core from the Mid-Atlantic Ridge. Journal of Geophysical Research: Solid Earth, 98(B6), 9671-9681. https://doi.org/10.1029/92JB01414
  87. Mills, R.; Elderfield, H. (1995a). Hydrothermal Activity and the Geochemistry of Metalliferous Sediment. In: S.E. Humphris, R.A. Zierenberg, L.S. Mullineaux, R.E. Thomson (eds.). Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions (pp. 392-407). Vol. 91. American Geophysical Union. https://doi.org/10.1029/GM091p0392
  88. Mills, R.; Elderfield, H. (1995b). Rare earth element geochemistry of hydrothermal deposits from the active TAG Mound, 26ºN Mid-Atlantic Ridge. Geochimica et Cosmochimica Acta, 59(17), 3511-3524. https://doi.org/10.1016/0016-7037(95)00224-N
  89. Mitra, A.; Elderfield, H.; Greaves, M.J. (1994). Rare earth elements in submarine hydrothermal fluids and plumes from the Mid-Atlantic Ridge. Marine Chemistry, 46(3), 217-235. https://doi.org/10.1016/0304-4203(94)90079-5
  90. Nozaki, Y. (2001). Rare earth elements and their isotopes in the Ocean. In: J.H. Steele (eds.). Encyclopedia of Ocean Sciences (pp. 2354-2366). Vol. 4. Academic Press Inc. https://doi.org/10.1006/rwos.2001.0284
  91. Nozaki, Y.; Alibo, D.S. (2003). Importance of vertical geochemical processes in controlling the oceanic profiles of dissolved rare earth elements in the northeastern Indian Ocean. Earth and Planetary Science Letters, 205(3-4), 155-172. https://doi.org/10.1016/S0012-821X(02)01027-0
  92. Ortiz, F. (2004). Guías para la localización de metales preciosos en ofiolitas colombianas. Informe de avance proyecto Cyted XIII.1. Ofiolitas: Características mineralógicas y petrográficas del yacimiento de níquel de Cerro Matoso. Dyna, 71(142), 11-23.
  93. Palandri, J.L.; Reed, M.H. (2004). Geochemical models of metasomatism in ultramafic systems: serpentinization, rodingitization, and sea floor carbonate chimney precipitation. Geochimica et Cosmochimica Acta, 68(5), 1115-1133. https://doi.org/10.1016/j.gca.2003.08.006
  94. Peter, J.M.; Goodfellow, W.D. (1996). Mineralogy, bulk and rare earth element geochemistry of massive sulphide-associated hydrothermal sediments of the Brunswick Horizon, Bathurst mining camp, New Brunswick. Canadian Journal of Earth Science, 33(2), 252-283. https://doi.org/10.1139/e96-021
  95. Pindell, J.; Barrett, S. (1991). Geological evolution of the Caribbean region: a plate tectonic perspective. In: G. Dengo, J.E. Case (eds). The Caribbean Region (pp. 405-432). Geological Society of America. https://doi.org/10.1130/DNAG-GNA-H.405
  96. Pindell, J.L.; Kennan, L. (2009). Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: an update. Geological Society, London, Special Publications, 328, 1-55. https://doi.org/10.1144/SP328.1
  97. Piper, D.Z. (1974). Rare earth elements in the sedimentary cycle: a summary. Chemical Geology, 14(4), 285-304. https://doi.org/10.1016/0009-2541(74)90066-7
  98. Piper, D.Z.; Graef, P.A. (1974). Gold and rare-earth elements in sediments from the East Pacific Rise. Marine Geology, 17(5), 287-297. https://doi.org/10.1016/0025-3227(74)90092-9
  99. Proskurowski, G.; Lilley, M.; Seewald, J.S.; Früh- Green, G.L.; Olson, E.J.; Lupton, J.E.; Sylva, S.P.; Kelley, D.S. (2008a). Abiogenic hydrocarbon production at Lost City hydrothermal field. Science, 319(5863), 604-607. https://doi.org/10.1126/science.1151194
  100. Proskurowski, G.; Lilley, M.D.; Olson, E.J. (2008b). Stable isotopic evidence in support of active microbial methane cycling in low-temperature diffuse flows vents at 9°50′N East Pacific Rise. Geochimica et Cosmochimica Acta, 72(8), 2005-2023. https://doi.org/10.1016/j.gca.2008.01.025
  101. Rosenbaum, J.; Sheppard, S. (1986). An isotopic study of siderites, dolomites and ankerites at high temperatures. Geochimica et Cosmochimica Acta, 50(6), 1147-1150. https://doi.org/10.1016/0016-7037(86)90396-0
  102. Ruhlin, D.E.; Owen, R.M. (1986). The rare earth element geochemistry of hydrothermal sediments from the East Pacific Rise: examination of a seawater scavenging mechanism. Geochimica et Cosmochimica Acta, 50(3), 393-400. https://doi.org/10.1016/0016-7037(86)90192-4
  103. Savin, S.M.; Epstein, S. (1970). The oxygen and hydrogen isotope geochemistry of clay minerals. Geochimica et Cosmochimica Acta, 34(1), 25-42. https://doi.org/10.1016/0016-7037(70)90149-3
  104. Sciarra, A.; Saroni, A.; Etiope, G.; Coltorti, M.; Mazzarini, F.; Lott, C.; Grassa, F.; Italiano, F. (2019). Shallow submarine seep of abiotic methane from serpentinized peridotite off the Island of Elba, Italy. Applied Geochemistry, 100, 1-7. https://doi.org/10.1016/j.apgeochem.2018.10.025
  105. Shank, T.M.; Fornari, D.J.; von Damm, K.L.; Lilley, M.D.; Haymon, R.M.; Lutz, R.A. (1998). Temporal and spatial patterns of biological community development at nascent deep-sea hydrothermal vents (9o50´N, East Pacific Rise). Deep Sea Research Part II: Topical Studies in Oceanography, 45(1-3), 465-515. https://doi.org/10.1016/S0967-0645(97)00089-1
  106. Sherrell, R.M.; Field, M.; Ravizza, G. (1999). Uptake and fractionation of rare earth elements on hydrothermal plume particles at 9°45′N, East Pacific Rise. Geochimica et Cosmochimica Acta, 63(11-12), 1709-1722. https://doi.org/10.1016/S0016-7037(99)00182-9
  107. Slack, J.F.; Grenne, T.; Bekker, A.; Rouxel, O.J.; Lindberg, P.A. (2007). Suboxic deep seawater in the late Paleoproterozoic: Evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, central Arizona, USA. Earth and Planetary Science Letters, 255(1-2), 243-256. https://doi.org/10.1016/j.epsl.2006.12.018
  108. Slack, J.F.; Grenne, T.; Bekker, A. (2009). Seafloor-hydrothermal Si-Fe-Mn exhalites in the Pecos greenstone belt, New Mexico, and the redox state of ca. 1720 Ma deep seawater. Geosphere, 5(3), 302-314. https://doi.org/10.1130/GES00220.1
  109. Sumicol (2002). Caracterización mineralógica de los tipos de roca de la laterita niquelífera de Cerro Matoso S.A. Colombia. Informe de investigación para Cerro Matoso S.A.
  110. Templeton, A.S.; Staudigel, H.; Tebo, B.M. (2005). Diverse Mn(II)-oxidizing bacteria isolated from submarine basalts at Loihi Seamount. Geomicrobiology Journal, 22(3-4), 127-139. https://doi.org/10.1080/01490450590945951
  111. Tobón, M.; Weber, M.; Proenza, J.A.; Aiglsperger, T.; Betancur, S.; Farré-de-Pablo, J.; Ramírez, C.; Pujol-Solà, N. (2020). Geochemistry of Platinum-Group Elements (PGE) in Cerro Matoso and Planeta Rica Ni-Laterite deposits, Northern Colombia. Boletín de la Sociedad Geológica Mexicana, 72(3), A201219. https://doi.org/10.18268/BSGM2020v72n3a201219
  112. Tostevin, R.; Shields, G.A.; Tarbuck, G.M.; He, T.; Clarkson, M.; Wood, R.A. (2016). Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings. Chemical Geology, 438, 146-162. https://doi.org/10.1016/j.chemgeo.2016.06.027
  113. Sui, A.U.; Lasby, G.P.G. (1998). Submarine hydrothermal manganese deposits in the Izu– Bonin–Mariana Arc: an overview. Island Arc, 7(3), 422-431. https://doi.org/10.1111/j.1440-1738.1998.00200.x
  114. Whiticar, M.J.; Faber, E. (1986). Methane oxidation in sediment and water column environments—isotopic evidence. Organic Geochemistry, 10(4-6), 759-768. https://doi.org/10.1016/S0146-6380(86)80013-4
  115. Zhang, C.L.; Horita, J.; Cole, D.R.; Zhou, J.; Lovley, D.R.; Phelps, T.J. (2001). Temperature-dependent oxygen and carbon isotope fractionations of biogenic siderite. Geochimica et Cosmochimica Acta, 65(14), 2257-2271. https://doi.org/10.1016/S0016-7037(01)00596-8